CONTENTS

- L

	Page
Abstract.	iv
Acknowledgements.	vi
Contents.	viii
List of Abbreviations.	xiii
List of Tables.	xvi
List of Figures.	xviii
CHAPTER 1. Introduction.	1
1.1 Burden of lymphatic filariasis.	2
1.2 Transmission dynamics of filariasis.	3
1.3 Importance of studies on experimental transmission.	5
1.4 Quantitative relationships of transmission dynamics.	6
1.5 Culex quinquefasciatus - Wuchereria bancrofti.	9
1.6 Objectives of the thesis.	11
1.6.1 General objective	12
1.6.2 Specific objectives	12
CHAPTER 2. Literature review.	13
2.1. The disease filariasis.	14
2.1.1. Super family – Filarioidae.	14
2.1.2. Filariasis.	, 14
2.1.3. Lymphatic filariasis.	.15
2.1.4. Bancroftian filariasis.	. 16
2.1.4.1. Historical background.	16
2.1.4.2. Distribution.	16
2.1.4.3. Adult W. bancrofti.	17
2.1.4.4. Microfilariae (mf).	17
viii	

2.1.4.5. Microfilaria (mf) periodicity of W.bancrofti.	18
2.1.4.6. Ingestion of microfilariae by the intermediate host.	19
2.1.5. Migration of microfilariae and development into infective stage.	20
2.1.6. Fate of the infective larvae.	22
2.1.7. Transmission of filariasis.	23
2.1.8. Clinical manifestations of lymphatic filariasis.	23
2.1.9. Socio-economic aspects of lymphatic filariasis.	27
2.2 Factors affecting transmission of filariasis.	29
2.2.1 Mf uptake by vector mosquitoes.	29
2.2.2 Mean blood meal volume.	30
2.2.3 Concentration of microfilariae.	31
2.2.4 Vector defence mechanisms against microfilariae.	32
2.2.5 Loss of parasite during the development of larvae in vector.	34
2.2.6 Infective (L_3) larval output.	36
2.2.7 Survival rate of infected mosquitoes.	37
2.3 Index of Experimental Infection (IEI).	39
2.4. History of experimental transmission studies.	40
CHAPTER 3. General Methodology.	43
3.1. Study area and population.	44
3.2. A summary of the epidemiology of filariasis in Walgama.	47
3.3. Colonization of <i>Cx.quinquefasciatus</i> in the laboratory.	52
3.3.1. Field collected adults.	52
3.3.2. Oviposition.	52
3.3.3. Larval culture.	52
3.3.4. Maintenance of adults.	55
3.4. Preparation of mosquitoes for experimental feeding.	56
3.5. Volunteer mf carriers.	56
3.6. Experimental feeding.	58

.....

-

3.7. Mosquito dissections.	58
3.7.1. Mosquitoes killed immediately after feeding.	58
3.7.2. Mosquitoes killed after incubation (day 14).	60
3.7.3. Dissections for stages of development.	60
3.7.4. Dead mosquitoes.	61
3.8 Frequency of experiments.	61
3.9 Data analysis	61
CHAPTER 4.	66
4.1. The Concentration W.bancrofti in Cx.quinquefasciatus.	67
4.1.1 Introduction.	67
4.1.2 Objective.	67
4.1.3 Methodology.	67
4.1.3. a). Concentration of <i>W. bancrofti</i> by <i>Cx. quinquefasciatus</i> .	67
b). Determination of the blood meal volume of laboratory	
bred Cx.quinquefasciatus.	68
4.1.4 Result and data analysis.	68
4.1.5 Discussion.	72
4.2. The development of <i>W.bancrofti</i> in <i>Cx.quinquefasciatus</i> under	
laboratory conditions.	76
4.2.1. Introduction.	76
4.2.2. Objective.	7 6
4.2.3. Methodology.	7 7
4.2.4. Data analysis.	77
4.2.5. Results and Discussion.	78
CHAPTER 5. The relationships in the transmission dynamics of bancroftian	
filariasis in Sri Lanka and the microfilaria uptake and infective	
larvae development of W.bancrofti in Cx.quinquefasciatus, in	
relation to host mf density.	8 6
x	

...

5.1	. Humai	n volunteers and mosquitoes.	87
5.2	. Data A	Analysis.	89
5.3	Result	S.	91
	5.3.1.	Variation of mf uptake and larval development at different	
		host mf densities.	91
	5.3.2.	Mf uptake as a function of host mf density.	95
·	5.3.3.	Infective larval output as a function of host mf density.	98
	5.3.4.	Prevalence of infected and infective mosquitoes as a function of	
		host mf density.	101
	5.3.5.	The aggregation of mf and L_3 in relation to host mf density.	103
	5.3.6.	The estimation of parasite-vector relationship.	106
	5.3.7.	The success of <i>W.bancrofti</i> microfilariae developing into infective	
		stage.	106
	5.3.8.	Expected infective larvae output in relation to host mf density.	109
5.4.	Discus	sion.	112
	5.4.1	Variation of mf intake and L_3 output in relation to host mf density.	112
	5.4.2	Mf uptake as a function of host mf density.	115
	5.4.3	Infective larval output as a function of host mf density.	117
	5.4.4	The regulation of larval yield.	118
CHAPTE	R 6. Si	gnificance of low-density microfilaraemia in transmission.	122
6.1	Introdu	action.	123
	6.1.1	Low-density microfilaraemia.	123
	6.1.2	Importance of low-density microfilaraemia in	
		filariasis transmission.	124
6.2	Object	ives.	126
		analysis.	126
6.4	Result		127
	6.4.1	Uptake of microfilariae.	127
	6.4.2	Infective larval (L ₃) development.	132

. *ب*

-

6.4.3 Infective larval (L_3) yield in low-density microfilaraemia.	135
6.5 Discussion.	138
6.5. a. Epidemiological significance of low-density microfilaraemia.	141
CHAPTER 7. The survival of <i>Cx. quinquefasciatus</i> and the loss of parasites due	
to mosquito mortality in the laboratory, following infecting blood	. •
meals from carriers with different levels of microfilaraemia.	145
7.1 Objective.	146
7.2 Methodology.	146
7.3 Data Analysis.	147
7.3.1 Survival of <i>Cx.quinquefasciatus</i> following an infecting blood	1 4 7
meal.	147
7.3.2 Parasite loss due to mosquito mortality.	147
7.4 Results.	148
7.4.1 The survival of mosquitoes after infecting blood meal.	148
7.4.2 The larval loss due to mosquito mortality.	151
7.5 Discussion.	156
7.5.1 Survival of <i>Cx.quinquefasciatus</i> after infecting blood meal.	156
7.5.2 Parasite induced mosquito mortality and parasite loss due to	
mosquito mortality.	159
CHAPTER 8. Regulation of parasitaemia of bancroftian filariasis during	
transmission under natural conditions.	164
8.1 Introduction.	165
8.2 Objectives.	166
8.3 Methodology.	167
8.4 Data analysis.	168
8.5 Results.	168
8.6 Discussion.	174
CHAPTER 9. Conclusions and observations.	178
REFERENCES.	183
ANNEXURES.	213

. .

.

xii

~

LIST OF ABBREVIATIONS

_ _

8	- Infinitive
χ^2	- Chi-square
°C	- Centigrade
μl	- micro litre
A. `	- Acanthocheilonema
A.mf	- mf in the abdomen
ADL	- adenolymphangitis
Ae.	- Aedes
Alb.	- Albendazole
An.	- Anopheles
ANOVA	- Analysis of variance
ATP	- Annual Transmission Potential
В.	- Brugia
BMDP	- Bio- Medical Data Processing
с'	- saturation level
С.	- Culicoides / Chrysops
CF	- Concentration Factor
CI	- Confidential Interval
cm	- centimetre
Cx.	- Culex
Cx.p.	- Culex pipiens
D.	- Dirofilaria
d.f.	- degrees of freedom
DALY	-
DALI	-Disability Adjusted Life Years

	DEC	- diethylcarbamazine citrate
	diss.	- dissected
	DSWb	- diurnally sub-periodic W.bancrofti
	E	- Expected mf uptake
	F	- Females
	FF.	- Fully Fed
	Fig.	- Figure
	FP	- finger prick
	g	- Grams
	G	- Gravid
	GM	- Geometric Mean
	GND	- Grama Niladari Division
	IEI	- Index of Experimental Infection
	Index MM	- Index Mosquito Meal
	IV	- Intra Venous
	Ive.	- Ivermectin
	k	- Clumping factor
	km	- Kilometre
	L	- first stage (sausage shape) larva
	L_2	- second stage (pre infective) larva
	L ₃	-third (infective) stage larva
ۍ ا	L ₄	- fourth stage larva
	LIMPHASIM	- Micro simulation model for lymphatic filariasis
	М	- Males
	М.	- Mansonia
	MDA	- mass drug administration
	mf	-microfilaria / microfilariae
		xiv

- -

mosq.	– mosquito
Ν	- North
No.	- Number
NP	- Nuclepore
NPWb	- nocturnally periodic W.bancrofti
NSWb	- nocturnally sub-periodic W.bancrofti
0	- Observed mf uptake
ONCHOSIM	- Simulation model for onchocerciasis
PELF	- Programme for Elimination of Lymphatic Filariasis
r	- regression coefficient
S	- South
SG	- Semi Gravid
sp.	- species
Std. err.	- Standard error
T.mf	- mf in the thorax
TDR	- Tropical Disease Research
TPE	- Tropical Pulmonary Eosinophilia
UNDP	- United Nations Development Project
W.	- Wuchereria
WHO	- World Health Organization
X	- mean mf uptake
x/y	- parasite (L ₃) yield
y.	- mean L ₃ output.

.

.

.

---- .

- -

,

xv

LIST OF TABLES	Page
Table 2.1 The location, distribution, common disease symptoms and some	
other characteristics of the common species of human filariasis.	15
Table 3.1 Mf prevalence rates by age groups and sex in 5 village units Matotagama,	
Walgama North, Walgama, Walgama Central. Walgama South.	50
Table 3.2 Mf rate by age groups and sex in the total area of Walgama.	50
Table 3.3 Frequency distribution of mf positives of preliminary survey (classified by	
density in 60µl FP blood).	51
Table 3.4 Summary of details of experiments according to arbitrary mf density groups	
based on Nuclepore method using 1 ml of venous blood.	62
Table 4.1 Results of 10 experiments to determine the blood meal volume of laboratory	
bred Cx.quinquefasciatus.	69
Table 4.2 The Concentration factors (CF) of mf of different mf density groups based	
on the finger prick count and Nuclepore count.	72
Table 4.3: Grouping of development experiments according to the host mf density and	70
mf uptake by mosquitoes.	78
Table 4.4 Percentage (mean number of larvae/mosquito) of ingested microfilaria developing into different stages of Wuchereria bancrofti during incubation	
period when <i>Culex quinquefasciatus</i> fed on different densities of	
microfilaraemia.	80
Table 4.5 Mean number of Wuchereria bancrofti in Culex quinquefasciatus during the	
development from day 1-15.	83
Table 5.1 Summary of the results of dissection Culex quinquefasciatus at microfilaria	
uptake and after incubation.	88
Table 5.2 Estimated parameter values and associated log-likelihoods (LL) for the	
relations describing mf uptake, W (m) and the clumping factor of the	
negative binomial distribution, k (m) as a function of host mf density (m).	97

_ L

Table 5.3	Estimated parameter values and associated log-likelihoods (LL) for the	
	relations describing number of L_3 developed, W (m) and the clumping	
	factor of the negative binomial distribution, k (m) as a function of host mf	
	density (m).	100
Table 6.1	Details of treatment history of 30 low-density carriers having 1-29 mf/ml.	127
Table 6.2	Summary of dissection of Cx.quinquefasciatus under low-density	
	microfilaraemia.	130
Table 7.1	Survival rates of Culex quinquefasciatus when fed on carriers with different	
	densities of microfilaraemia.	149
Table 7.2	Parasite induced mosquito mortality and the mean larval loss during the (L_3)	
	development of <i>W.bancrofti</i> .	152
Table 8.1	Host mf prevalence. mf density and some entomological parameters in the	
	nine localities in the study area (1996 - 1997).	164

L۲

٢

.

-

	LIST OF FIGURES	Page
Fig. 3.1	The maps showing the position of Matara in filariasis endemic belt of Sri	
	Lanka (upper) and 3 suburbs of the preliminary study area (lower).	45
Fig. 3.2	The Study Area of Walgama, Matara consisting of five Grama Niladari	
	(Village Headmen) Divisions.	46
Fig. 3.3	Method of blood collection with capillary tube for FP method.	48
Fig. 3.4	Preparation of three linear FP blood smear (60 μ l) on a glass slide.	48
Fig. 3.5	FP blood smears (60 μ l) after staining with Geimsa.	49
Fig. 3.6	NP membranes with 1 ml of IV filtered blood, after staining with Geimsa.	49
Fig. 3.7	Collection of indoor resting mosquitoes with a mouth aspirator and the	
	electrical torch.	53
Fig. 3.8	Maintenance of mosquitoes in stock cages at the insectory.	53
Fig. 3.9	Maintenance of larval culture trays at the insectory.	54
Fig. 3.10	Feeding of mosquitoes (inside feeding cage) on the upper arm of the	
	volunteer, inserted through the netting.	57
Fig. 3.11	Feeding of mosquitoes (inside a paper cup) on the upper arm of the	
	volunteer, through the mosquito netting.	57
Fig. 3.12	Selection of fully gorged mosquitoes from the feeding cage.	59
Fig. 3.13	Maintenance of gorged mosquitoes at the insectory.	59
Fig. 3.14	Larvae adhering to mouthparts and to body wall of the mosquito head.	60
Fig. 3.15	Exsheathed mf found in the thorax of the mosquito.	63
Fig. 3.16	L_1 larvae found in the thorax of the mosquito.	64
Fig. 3.17	Developing L_2 larvae in thoracic muscle.	64
Fig. 3.18	Large number of L_3 larvae found in a single mosquito.	65
Fig 4.1	The scatter plot of the concentration factors based on finger prick and	

_ •

71

•

.

•

J.

Nuclepore count

xviii

Fig. 4.2	Concentration factor of mf for different density groups based on Nuclepore	
	count and finger prick count.	73
Fig. 4.3	Variation of development of W.bancrofti in Cx.quinquefasciatus during	
	incubation when fed on carriers in different density groups.	84
Fig. 5.1	Percentage of negative Culex quinquefasciatus at mf uptake and infective	
	larval output for different host mf density groups	92
Fig. 5.2	Percentage of microfilariae and infective larvae in infected Culex	
	quinquefasciatus under different host mf density groups.	93
Fig. 5.3	Relation between host mf density and number of micrlofilariae ingested (mf	
	uptake) by mosquitoes.	96
Fig. 5.4	Relation between host mf density in human and number of L_3 /mosquito.	99
Fig. 5.5A	Relationship between host mf density and percentage of mosquitoes ingesting	
	microfilariae.	102
Fig. 5.5B	Relationship between host microfilaria density and number of mosquitoes with	
	L ₃ larvae after 14 days incubation.	104
Fig. 5.6	Relationship between host mf density and variability in mf uptake and L_3	
	outputs in mosquitoes indicated by aggregation parameter (k) assumed to be	
	distributed as negative binomial	105
Fig. 5.7	Relationship between mean mf uptake (x) and the inverse of L_3 yield (x/y).	107
Fig 5.8	Success rate of mf developing into L_3 in relation to host mf density.	108
Fig. 5.9	Success rate of mf developing into L_3 in relation to mean mf uptake.	108
Fig. 5.10	The success rate of L_3 in relation to mean larval load.	110
Fig. 5.11	Percentage of L_3 from all larvae in relation to host mf density.	110
Fig. 5.12	Mean expected L_3 in relation to host mf density.	111
Fig. 5.13	Mean expected L_3 in relation to mean mf uptake.	111
Fig: 6.1	Variation of microfilariae in mosquitoes at low and ultra low-density	
	microfilaraemia.	129
	xix	

Fig. 6.2	Mf uptake in relation to mf density in low and ultra low-density		
	microfilaraemia.	131	
Fig. 6.3	Prevalence of infected mosquitoes at low and ultra low-density		
	microfilaraemia.	131	
Fig. 6.4	Variation of L_3 output in infective mosquitoes under low and ultra low-density		
	microfilaraemia.	133	
Fig. 6.5	Mean L_3 output in relation to host mf density under low and ultra low-density		
	microfilaraemia.	134	_ L
Fig. 6.6	Prevalence of infective mosquitoes at low and ultra low-density		
	microfilaraemia.	134	
Fig. 6.7	Scatter plot of L_3 yield in relation the host mf density.	136	
Fig. 6.8	Scatter plot of L_3 yield in relation to mean mf uptake.	136	
Fig. 6.9	L_3 yield in relation to host mf density under low-density microfilaraemia.	137	
Fig. 6.10	L_3 yield in relation to mean mf uptake under low-density microfilaraemia.	137	
Fig. 7.1	Survival rate of Culex quinquefasciatus mosquitoes when fed on mf carriers		
	with different microfilaraemia levels.	150	
Fig. 7.2	Larval loss due to mosquito mortality during the extrinsic incubation period.	154	
Fig. 7.3	Several L_3 larvae coming out of the proboscis during dissection of a dead		
	mosquito.	155	
Fig. 7.4	Dead and disintegrating mf, L_1 and L_2 larvae in the thorax of a mosquito.	163	
Fig. 8.1	Plot of worm loads of different stages in wild Culex quinquefasciatus		
	mosquitoes for different host mf prevalences in the community.	166	
Fig: 8.2	Plot of different worm loads in wild Culex quinquefasciatus mosquitoes for		
	varying intensities of microfilaraemia in the community.	167	
Fig: 8.3	The relationship between the mf uptake and the L_3 output in wild Culex		
	quinquefasciatus mosquitoes.	169	