UNIVERSITY OF RUHUNA BACHELOR OF COMPUTER SCIENCE (GENERAL) DEGREE LEVEL II (SEMESTER II) EXAMINATION – JANUARY 2018 CSC2222 - Computers Systems II **Duration: 2 hours** ## Answer All Four (4) Questions 1. a) Briefly explain what is meant by the General Purpose Hardware Configuration in Von Neumann Architecture. b) - i. State three (3) classes of interrupts. - ii. Briefly explain the two (2) approaches of handling multiple interrupts. - What is the difference between Centralized Bus Arbitration and Distributed Bus Arbitration? - d) Consider a computer with following characteristics. Size of memory address 32 bit * Word size 32 bits (4 bytes) * Block size 4 words (16 bytes) Cache size 64 Kbytes. - If direct mapping is used in this cache, calculate the Tag, Line and Offset of the main memory address. - ii. If **four way set associative mapping** is used, find out where a word from the main memory location **ABCDE8F8** (in hexadecimal) is mapped in the cache. - iii. Name two (2) possible Replacement Algorithms that can be used for a cache using four way set associative mapping. 2. a) - i. State three (3) nonvolatile semiconductor memory types. - ii. What is the difference between SRAM (Static RAM) and DRAM (Dynamic RAM) in terms of the hardware technology of bit storage? - b) Briefly explain the advantage of using SDRAM (Synchronous DRAM) instead of DRAM in a CPU design. c) - i. State the two (2) types of errors that can occur on semiconductor memory types. - Calculate the minimum number of check bits required for Single Error Correction when the data word sizes are 8 bits and 64 bits respectively. - d) Answer the following questions assuming that Hamming Code algorithm is used for Single Error Correction in a memory with 8 bit data words with 4 check bits. - i. Fill the table given below and obtain the equations for check bit calculation. | Bit | 12 | 11 | 1.0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |--------------------|----|----|-----|---|---|-----|---|------|---|---|---|---| | Position | | | | | | | | 2012 | | | | | | Position
Number | | | | | | | | | | | | | | Data
bits | | | | | | | | | , | | | | | Check
bits | | | | | | 300 | | | | | | | - ii. Using the equations obtained in (d) (i), calculate the composite code word stored in the memory for the data word 00110011. - iii. For the 8-bit data word 00111001, the check bits stored with it would be 0111. Suppose for a word read from memory, the check bits are calculated to be 1101. What is the data word that was read from memory? 3. a) 6) - i. Briefly explain how data are read and written in Optical Storage devices. - ii. Nowadays, the disk substrate of magnetic disks is created with glass rather than aluminum. State three (3) advantages of this usage. - i. "At least three disks need to fail for a data loss in RAID-6". Briefly explain the reason for this. - ii. Rotating disk at **constant angular velocity** wastes the space on **outer tracks** of magnetic disks. Briefly explain how this drawback is overcome in modern hard disks. - Write down the minimum and the maximum integer that can be represented with 16 bits using Two's complement binary number representation. - ii. Evaluate the following expression using **Computer Arithmetic** with **Two's complement** binary number representation. Name the algorithms or rules you use for this calculation. $$((-14)\times 4)+80$$ d) Explain how (-5) can be represented using IEEE 32-bit floating point format as given below. | Sign of significand | Biased exponent | Significand | |---------------------|-----------------|-------------| | (1 bit) | (8 bits) | (23 bits) | - 4. - a) - i. State three (3) types of instructions used in a computer system. - ii. Briefly explain the method of handling procedure calls with their parameters in processing of Transfer of Control operations. - b) - i. What is meant by a True General Purpose register? - ii. Draw the structure and explain the role of each area of a register window used in RISC (Reduced Instruction Set Computers). - iii. State three (3) differences between the usage of large register files and caches for quick accessing of operands. - c) An Instruction cycle consists of following four (4) steps. - I. Fetch Instruction (FI) - II. Decode Instruction and calculate address (DA) - III. Fetch Operand (FO) - IV. Execute (EX) Each step mentioned above takes 5µs to complete. Suppose there is a sequence of seven (7) instructions to be executed in a pipeline. Assume that the third (3rd) instruction is a conditional branch to the seventh (7th) instruction as shown in the following figure. Assume that all four steps of the instructions can be executed in parallel without any memory conflicts. If the **branch is taken** during the execution in the pipeline mode: - i. Draw the timing diagram for instruction pipelining of the above sequence of instructions. - ii. Using the timing diagram in (c) (i), calculate the total time for the execution of given sequence of instructions under instruction pipelining. - iii. Find the ratio between the time of execution under instruction pipelining and the time of execution without instruction pipelining. - d) What is meant by Pipeline Hazards?