CONTENTS

	PAGE NO:
ABSTRACT	v
ACKNOWLEDEMENT	vii
CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
Chapter 1	
1.1 Introduction	1
1.2 Objectives of the study	5
Chapter 2	
2. Literature	6
2.1 Origin and seed structure	7

:

.

	•
2.2 Composition of sesame seed	8
2.2.1 Sesame oil	10
2.2.1.1 Properties of oil	10
2.2.1.1.1 Physical properties	10
2.2.1.1.2 Chemical properties	11
2.2.1.1.2.1 Fats	11
2.2.1.1.2.2 Fatty acids	12
2.2.1.1.2.3 Composition of Fatty acid of sesame oil	13
2.2.1.1.2.4 Distribution of Fatty Acids	14
2.2.2 Proteins	15
2.2.2.1 Protein Content in Sesame seeds	15
2.2.2.2 Characterization of Protein in Sesame	15
2.2.2.3 Protein value of Sesame	17
2.2.3 Carbohydrates	19

<i>La.L.</i> J.	Carbonyurates	19
2.2.4	Minerals	20
2.2.5	Vitamins	21
2.2.6	Antinutritional Factors	23
2.3 D	egradation of lipid	24

2.3.1 Rancidity	24
2.3.1.1 Hydrolytic Rancidity	25
2.3.1.1.1 Influence of Enzymes for hydrolytic rancidity	26
2.3.1.2 Oxidative Rancidity	27
2.3.1.2.1 Autoxidation	27
2.3.1.2.1.1 Mechanism of Autoxidation	27
2.3.1.2.2 Enzymic oxidation	31
2.3.1.2.2.1 Microbial source of lipolytic enzymes	32
2.3.1.2.2 Photo oxidation	32
2.4 Processing of Sesame seeds	33
2.4.1 Cleaning	33
2.4.2 Dehulling and Separation of hulls	33
2.4.3 Blanching	34
2.4.3.1 Equipment	35
2.4.3.1.1 Steam blanchers	36
2.4.3.1.2 Hot-water blanchers	38
2.4.3.2 Effect of blanching on foods	39
2.4.3.2.1 Nutrients	39
2.4.3.2.2 Colour and flavour	40
2.5 Oil Extraction and Purification	40
2.5.1 Extraction	40
2.5.2 Purification	42
2.5.3 Effect of processing on the nutritive value of oils	42
2.5.4 Cake and Meal	44
2.5.5. Protein Concentrates and Isolates	47
2.5.5.1 Preparation	47
2.5.5.2 Chemical Composition	48
2.5.5.3 Functional Properties	48
2.5.6 Roasting	49
2.6 Utilization	50
2.6.1 Uses of Sesame seeds in Human Food	50
2.6.1.1. Seeds and Kernels	50
2.6.1.2 Oil	51

÷

•

2.6.1.3 Cake and Meal	52
2.6.2 Animal Feed	55
2.6.3 Industrial Uses	56

۱.

Chapter 3

3. Materials and methods	57
3.1 Materials and Equipment used for the study	57
3.2 Sample Selection and Preparation	57
3.3 Experimental procedure	58
3.3.1 Determination of acid value and Free Fatty Acid level of sesame	
seeds and sesame oil	58
3.3.2 Determination of effects of storage conditions on FFA formation	59
3.3.3 Determination of effects of the methods of oil extraction on FFA formation	61
3.3.4 Determination of influence of Enzymes, light and head space on	
shelf life of extracted oil.	62
3.3.4.1 Extraction of sesame oil from raw sesame seeds	62
3.3.4.2 Extraction of sesame oil from blanched sesame seeds	62
3.3.5 Determination of influence of enzymes in the process of FFA	
formation during shelf life	63
3.3.6 Determination of influence of light in the process of FFA formation	63
3.3.7 Determination of Influence of head space in the process of FFA	
formation during shelf life	64
3.4 Stastical Designs used for the experiment	65
3.4.1 Simplest randomized block design	65
3.4.2 Factorial Design	66
3.4.3 Special set of general design	67
3.5 Determination of effect of packing material onedible grade sesame oil	69

Chapter 4

4.	Results and Discussion	71
4.1	Maintenance of Acid Value of Sesame Seeds below the acceptable	
	value of six during storage	71

4.1.1 Change in Acid Value of Unblanched Raw Sesame Seeds during storage	71
4.1.1.1. Correlationship between acid value of raw sesame seeds and	
period of storage	72
4.1.1.2. Change in Acid value of the unblanched raw sesame seeds	
immediately after decortication and seed coat during storage	73
4.1.1.3 Correlationship between acid value of cotyledon and seed coat	
during storage	75
4.1.1.4 Relationship between acid value of seed coat and period of storage	76
4.1.1.5 Comparison of acid values of raw seeds, seed coat and cotyledons	77
4.1.1.6 Formula for percentage of decorticating	78
4. 1.2 Changes in acid value of decorticated blanched sesame seeds during storage	79
4.1.2.1 Relationship between acid value of decorticated blanched	
sesame seeds and period of storage	80
4.1.3 Changes in acid value of decorticated raw seeds (unblanched) during storage	81
4.1.3.1 Relationship between acid value of decorticated raw seeds	
and period of storage	82
4.1.4 Effect of un-decorticated blanched sesame seeds on acid value	
during storage	84
4.1.4.1 Relationship between acid value of un-decorticated blanched	
seeds and period of storage	85
4.2 Maintenance of free fatty acids at acceptable levels in extracted oil.	87
4.2.1 Development of FFA during oil extraction	87
4.2.2 Influence of enzymes in the process of FFA formation	
during storage of sesame oil	88
4.2.3 Influence of light in the process of FFA formation	
during storage of sesame oil.	90
4.2.3.1 Development of acids in the initial phase and final phase	91
4.2.4 Influence of head space in the process of FFA formation	
during storage of sesame oil	92
4.2.4.1. Development of acids in the final phase	93
4.2.4.2 Counter relation ship with volume of head space & FFA level	93
4.2.5 Statistical designs to ascertain combined effects of treatments	

{)‡

on FFA formation	94
4.2.5.1 Simplest randomized block design in sesame oil	95
4.2.5.2 Factorial design	97
4.2.6. Special set of general designs that consist of orthogonal arrays	98
4.3. Selection of a suitable packing material for edible grade oil	100

Chapter 5

=

L

۱

5.1	Conclusion	102
5.2.	Suggestions to improve conventional method of oil extraction	103

1-

Chapter 6

6.	Fabrication of a decorticating machine for sesame seeds	105
6.1	Tests of prototypes	106
6.1.1.	Food Processor	106
6.1.2.	High Pressure Water	106
6.1.3.	Roller and scrape	107
6.1.4.	Table with a sleigh	107
6.1.5.	Cylinder with rods	108
6.2.	Evaluation of different proto types prior to fabrication of the machine	110
6.3.	Components of the machine	111
6.3.1.	The frame	111
6.3.2.	The cylinder and shaft	111
6.3.3.	The external parts	112
6.3.4.	The electrical system	112
6.4.	Using the machine	113
Refere	ences	114
Appendices		126

Table 2.1 Area and production of sesame seeds in the world	6
Table 2.2 : Proximate composition of whole sesame seeds.	10
Table 2.3: Characteristics of Sesame oil relative to corn and sunflower oil	11
Table 2.4: Fatty acids composition of sesame oil (% of total fatty acids)	13
Table 2.5 Essential amino acid composition of sesame meal proteins (g/16g N)	18
Table 2.6 Protein nutritive value for rats fed sesame proteins	
supplemented with amino acids	19
Table 2.7. Sugar content of sesame seeds and defatted flour	20
Table 2.8: Mineral content of sesame seeds	21
Table 2.9. Vitamin content of whole sesame seeds	22
Table 2.10 Vitamin E active compounds in sesame and sunflower oils (mg/100g oil)	22
Table 2.11. Effects of dehulling on the chemical composition of sesame seeds.	34
Table 2.12 – Advantages and limitation of different types of conventional blancher	37
Table 2.13: Effects of dehulling and the method of oil extraction on	
the composition (%) of sesame flour/cake	46
Table 2.14 Properties of bread baked with oilseed-wheat flour	
blends at 17.5% and 20.0% protein levels.	46
Table 2.15 Functional properties of sesame and soybean protein products.	49
Table 2.16: PER, NPR true protein digestibility (TD) and levels of serum	
lipids in female rats fed sesame-blackbean composite flour	54
Table 2.17 Composition and quality of fermented salami	55
Table 4.1 Variation of acid value with the period of storage.	72
Table 4.2. Quantified acid value with respect to the period of storage	
for six months period.	73
Table 4.3 Variation of acid value of Cotyledons (decorticated seeds)	
with respect to the period of storage.	75

10

Table 4.4 Quantified acid value of cotyledons with respect to the period

11

of storage for six months period.	76
Table 4.5 Variation of acid value of seed coat with respect to the time factor.	76
Table 4.6 Quantified acid value of seed coat with respect to the time factor.	77
Table 4.7 Variation of acid value of decorticated blanched seeds with	
period of storage.	80
Table 4.8 Quantified acid value with respect to the period of storage	81
Table 4.9 Variation of acid value of decorticated raw seeds with respect to the	83
period of storage.	
Table 4. 10. Quantified acid value with respect to the time factor.	83
Table10(a): Variation of acid value with respect to the period of storage	85
Table 4.11: Quantified acid value with respect to the period of storage	86
Table:4.12. Summary of maximum possible storage period (months) of eachtreatment	86
Table 4.13 : FFA level with respect to the corresponding compressions in raw	
sesame seeds (with seed coat)	87
Table 4.14: FFA level with respect to the corresponding compressions in	
blanched sesame seeds (with seed coat)	87
Table 4.15: Relationship between development of FFA and period of	
storage of sesame oil.	88
Table 4.16. Development of FFA at different degrees of exposure during storage	91
Table 4.17: Relation ship between free fatty acids level and head space	
during storage	94
Table 4.18: Development of free fatty acids with respect to the	
treatment combinations during 18 months storage period	95
Table 4.19: Development of FFA with respect to the treatment	
combination during storage	97
Table 4.20: Development of FFA with respect to the treatment combination	98
Table 4.21: Calculated mean values of three variables in development of	

FFA with respect to the period of storage	99
Table 4.22: Development of FFA in sesame oil in different packing materials	
during storage	100
Table 6.1: Test results of the food processor	106
Table 6.2: Test results of high pressure water	107
Table 6.3: Test results of roller and scrape	107
Table 6.4: Test results of the table with a sleigh	108
Table 6.5: Test results of cylinder with rods	109
Table 6.6: Test results of prototype design of cylinder with rods	109
Table 6.7 : Evaluation of different proto types	110

•

I

Page No.

Fig. 2.1: Partial cross section through sesame seed (x 250)	9
Fig. 2.2 Flow diagram for the production of sesame oil and sesame flour.	45
Fig.4.1 Relationship between acid value and period of storage of	
unblanched raw sesame seeds	72
Fig. 4.2 Change in Acid value of raw sesame seeds immediately	
after decortication and seed coat during storage	74
Fig 4.3 Comparison of Development of acids in Raw seeds, Seed coat	
and cotyledons during storage	78
Fig. 4.4 Acid value of decorticated and blanched sesame seeds during storage	80
Fig 4.5 Acid value of Decorticated Raw seeds during storage	82
Fig 4.6 Acid value of Blanched undecorticated seeds during storage	84
Fig:4.7 Influence of Enzymes in development of FFA during storage	89
Fig 4.8 Influence of Light in Process of FFA formation during storage	90
Fig: 4.9 Influence of head gap in development of FFA during storage of sesame oil	92
Fig 6.1: Fabricated sesame decorticating machine (Prototype)	111

.