University of Ruhuna

Bachelor of Science General/Special Degree Level II (Semester II) Examination - January 2018

Subject: Industrial Mathematics

Course Unit: IMT2b2β/MSP3b9β (Mathematical Computing(Repeat Examination))

Time: Two (02) Hours

Answer All questions.

Student	N	lumber.	
Student	1	uniber.	

Read the following Instructions carefully.

- (a) No calculators are required.
- (b) Your home directory at the exam shall NOT be your usual home directory.
- (c) Create a folder with your index number and save all files inside it.
- (d) \$ave each answer while doing the paper.
- (e) Save each question with the question number inside the created folder. (Eg: Q1.wxm)
- (f) At the end of the examination you MUST submit this paper along with any extra sheets you may use, attached to this paper.
- 1. Use WXMaxima to calculate the numerical value of the followings and write down the answers.

(i)
$$\frac{1}{5} + \frac{5}{11} - 5$$

(ii)
$$e^{-4} + \cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{8}\right)$$

(iii) $\sqrt{5} + e^{\pi} + \frac{40}{8}$

(iv)
$$\sin 35^o + (0.7734)^{-0.456} + e^{4.3}$$

(v) $5^{\ln 34} + e^{0.234} + 3^{\log_{10} 34}$

(vi)
$$\log_{2.456} 12 + \log_{0.123} 10 + \ln 23.1543$$

 $(vii) \frac{1}{3} \left(\frac{\ln 15}{\log_{1.52} 4} \right)$

(viii)
$$4e^{1/53}\log_{3.5} 15$$

(ix) $e^{1.23 \ln 4}$

(x)
$$\log_{\pi} e$$

		•		
	 amboro decreto militare			

transcore est				
	 • • • • • •			

- (a) Write down expressions in WXMaxima for the followings:
 - (i) $\sum_{i=1}^{p} (x_i^2 + x_i + 2)$ (ii) $\sum_{t=1}^{k} (2^t + t^2)$ (iii) $\prod_{p=1}^{\infty} p^x$ (iv) $\prod_{k=1}^{\infty} a^{T_k}$

 - (b) Answer the following questions using WXMaxima.
 - (i) Solve $x^5 + 6x^4 13x^3 90x^2 72x$ for x.
 - (ii) Find numerical value of $\frac{d}{dx}(\ln x^2 2x + 5)$ at x=2.
 - (iii) Find $\frac{\partial^3}{\partial y \partial x^2} (-y \sin(2x) + 5x^2 e^{-3y})$
 - (iv) Find the jacobian matrix of the function

$$\underline{f}(x,y) = (x^2 - 2xy + 2y + x - 1, e^{x+y^2})$$

- (v) Evaluate $\int_0^\infty 5e^{-5t} dt$
- (vi) Integrate $\int_0^1 \int_a^b \frac{y}{b-a} dxdy$
- (vii) Find partial fraction of $\frac{4x-1}{(x^2-4x+4)}$
- (viii) Compute the limit of

$$\lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

3. Let Y be a poissonly distributed random variable with event rate λ . The probability of observing k events in an interval is given by the equation

$$Pr(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
 $k = 0, 1, 2, ...$

- a) Define above function in WXMAXIMA.
- b) Suppose web site of the Department of Mathematics is visited averagely by 4 people daily. Find the following pobabilities.
 - (i) Exactly 2 people will visit the web site.
 - (ii) At least 3 people will visit the web site.
- 4. The plant manager of a company that manufactures office equipment's is attempting to determine the pooled variance between two assemble methods of a new chair. $n_1=15$ random selected workers each assembled the chair using method A and another $n_2=15$ workers using method B. The assembly times in minutes fo each worker were recorded as shown in the table below.

Find the pooled variance (S_p^2) between two assemble methods. Note that S_p^2 is given by the formula

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2};$$

where S_1^2 and S_2^2 are the sample variances of method A and B respectively and the sample variance and mean are given by following expressions.

$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$
 and $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$.

- 5. (a) (i) Create a 4 ×4 identity matrix.
 - (ii) Create a diagonal matrix of size 6 with diagonal element sin(x).
 - (b) Let

$$A = \begin{bmatrix} 4 & 4 & -3 \\ 2 & 6 & 3 \\ -4 & 2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & 2 & 2 \\ 1 & 9 & 1 \\ -3 & 2 & 8 \end{bmatrix}$$

- (i) Input the matrix A and B in Maxima.
- (ii) Find A + B.
- (iii) Find 3A.
- (iv) Find B^2
- (iv) Find A.B
- (vi) Find inverse of A + B.
- (vii) Find transpose of A + B.
- (viii) Find the determinant of A + B.
- (ix) Obtain characteristic equation of A.
- (x) Divide the first row of matrix A by 2.
- 6. (a) Plot the functions $f(x) = \frac{1}{2\pi}e^{-\frac{x^2}{2}}$ and $g(x) = \frac{1}{\pi(1+x^2)}$ on the same graph in the range of $-3 \le x \le 3$. Name the graph f(x) as Gaussian distribution and the graph g(x) as Cauchy distribution. The vertical axis should be labeled as density.
 - (b) The Binormal distribution is given by $f(x,y) = \frac{1}{2\pi} \exp(-\frac{1}{2}(x^2 + y^2))$.
 - (i) Plot the function f(x,y),

- (ii) Obtain contour plot, in the range $-3 \le x \le 3$ and $-3 \le y \le 3$
- (c) Plot the graph represented by the parametric equations $x=t^5+\sin(2\pi t)$ and $y=t+e^t$ for -2.5 \leq t \leq 2.5. The horizontal and vertical axis should be labeled as x(t) and y(t) respectively.
- 7. (a) (i) Define the following function in Maxima

$$f_{(x)} = \begin{cases} (x+5)^2 & ;x < -5\\ (x+5)/2 & ;-5 \le x < 0\\ (-x+5)/2 & ;0 \le x < 5\\ (x-5)^2 & ;x \ge 5 \end{cases}$$

- (ii) Plot the above function in the interval [-10,10].
- (b) (i) Given a quadratic equation $ax^2 + bx + c = 0$. If $b^2 4ac$ is non-negative, the roots of the equation can be solved with the following formulae,

$$root1 = \frac{1}{2a}(-b + \sqrt{b^2 - 4ac})$$

$$root2 = \frac{1}{2a}(-b - \sqrt{b^2 - 4ac})$$

Write a Maxima program inside a block to read in coefficients a,b and c, and compute and display the roots. If the discriminant $b^2 - 4ac$ is negative the equation has complex roots. Thus, this program should solve the equation if the discriminant is non-negative and show a massage otherwise.

- (ii) Using the above program solve following quadratic equations.
 - (i) $x^2 5x + 6 = 0$
 - (ii) $x^2 4x + 4 = 0$
 - (iii) $x^2 + 2x + 5 = 0$
- 8. a) Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.
 - b) A container in the shape of a right circular cylinder with no top has surface area 3π ft^2 . Giving comment for every step answer the following,
 - (i) What height h and base radius r will maximize the volume of the cylinder?
 - (ii) What is the maximum volume of the cylinder?