TABLE OF CONTENT

Acknowledgement

Abstract

CHAPTER 1 : GENERAL INTRODUCTION

CHAPTER 2 : LITERATURE REVIEW

2.1. Present status of agriculture in Sri Lanka
2.2. Importance of agroforestry as a land use system in Sri Lanka

 2.2.1 Agroforestry

 2.2.2. Major agroforestry species occurring in wet and dry zones of Sri Lanka

 2.2.3. Significance of agroforestry species

 2.2.3.1. Ecological/Environmental aspects

 2.2.3.2. Economical aspects

 2.2.3.3. Social aspects

 2.3. Nutrient cycling by agroforestry species

 2.3.1. Litter-fall

 2.3.2. Nutrient concentration of leaf-litter

 2.3.3. Rate and degree of decomposition of litter

 2.4. Factors affecting litter decomposition and nutrient release

 2.4.1. External factors

 2.4.2 Substrate quality

 2.4.2.1. Polyphenol content

 2.4.2.2. Nitrogen content and Carbon to Nitrogen ratio

 2.4.2.3. Lignin content

 2.4.2.4. Effect of mixing
2.5. Foliar nutrient resorption

2.5.1. Factors affecting nutrient resorption

2.5.2. Importance of nutrient resorption

2.6. Soil respirometry

2.7. Relevance of agroforestry species in developing sustainable agroecosystems

CHAPTER 3 : CHEMISTRY OF LEAF LITTER OF NINE TRADITIONAL AGROFORESTRY SPECIES

3.1. Introduction

3.2. Materials and Methods

3.3. Results

3.3.1. Concentrations of macro-nutrients (N, P, K, Ca and Mg)

3.3.2. Concentration of carbon, lignin, and cellulose in leaf litter

3.4. Discussion

CHAPTER 4 : DECOMPOSITION OF AND CO₂ EVOLUTION FROM LEAF LITTER OF NINE AGROFORESTRY SPECIES

4.1. Introduction

4.2. Materials and Methods

4.2.1 Site description

4.2.2. Litter decomposition

4.2.3. CO₂ evolution from the leaf litters

4.2.4. Computational procedures

4.2.5. Statistical analyses

4.3. Results

4.3.1. Time course of decomposition of litter types
4.3.2. Decomposition constant and half-life of litter types 59

4.3.3. Effects of litter quality on mass loss 60

4.3.4. Soil respirometry 62

4.4. Discussion 63

4.4.1. Decomposition of leaf litter 63

4.4.2. Decomposition constant and half-life of leaf litter 66

4.4.3. Effects of initial litter chemistry on decomposition rate 67

4.4.4. CO₂ evolution from leaf litter 68

CHAPTER 5 : NUTRIENT RELEASE PATTERN OF LEAF LITTER OF NINE AGROFORESTRY SPECIES 72

5.1. Introduction 72

5.2. Materials and Methods 74

5.2.1. Site description 74

5.2.2. Litter decomposition and nutrient dynamics 74

5.2.3 Computational procedure 75

5.2.4 Statistical analysis 75

5.3. Results 75

5.3.1. Nutrient release pattern 75

5.3.1.1. Nitrogen (N) 75

5.3.2.2. Phosphorus 79

5.3.2.3. Potassium 80

5.3.2.4. Calcium 82

5.3.2.5. Magnesium 83

5.3.2.6. Impact of litter quality on nutrient dynamics 85

5.3.2.7. Correlation between mass loss and nutrient dynamics 87
5.4. Discussion

5.4.1. Nitrogen

5.4.2. Phosphorus

5.4.3. Potassium

5.4.4. Calcium and magnesium

CHAPTER 6: NITROGEN RESORPTION EFFICIENCIES OF THE AGROFORESTRY SPECIES

6.1. Introduction

6.2. Materials and methods

6.2.1. Site description

6.2.2. Species studied

6.2.3. Sampling

6.2.4. Chemical analysis

6.2.5. Calculations

6.2.6. Statistical analyses

6.3. Results

6.3.1. Nitrogen concentrations in foliage

6.3.2. Nitrogen resorption efficiencies (NRE)

6.3.3. Relationship between N content and Nitrogen Resorption Efficiency (NRE)

6.4. Discussion

CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS

CHAPTER 8: REFERENCES
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some major agroforestry species in wet zone of Sri Lanka</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Some major agroforestry species in dry zone of Sri Lanka</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Agroforestry tree species in Sri Lanka used as livestock feed</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Leaf litter fall and litter quality from Marondera’s miombo woodland between July and September 1992 (% dry weight) (Mtambanengwe and Kirchmann, 1995)</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Average annual nutrient inputs (Kg ha⁻¹) by litter fall in monoculture plantations in Karnataka, India (Ramachandra Sawamy, 1992)</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Biomass and litter production in plantations at New Forest Dehra Dun in India (Pande and Sharma, 1993)</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Litterfall and nutrient recycling of different species during September 1986 to August 1987 in Devbal, India (Sugar, 1989)</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Litter production and recycling of nutrients of 3 fast-growing species in Karnataka, India</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Status of soil microorganisms under different fast-growing species</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Initial nutrient concentrations of leaf litter of various agroforestry species</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Initial chemical characteristics in the leaf litter of various agroforestry species.</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Per cent nutrient concentrations in leaves/leaf litter of some agroforestry and forestry species</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Climatic data from September 1996 to April 1997 at Mapalana</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Change in mass during the decomposition of leaf litter of nine agroforestry species</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Annual decomposition rate constant (k) and half-life (Tⁿ) of nine agroforestry species</td>
<td>60</td>
</tr>
</tbody>
</table>
4.4. Correlation co-efficient of initial litter quality versus decomposition constant

4.5. Annual decomposition rate constant (k) and half-life (T\(^0\) \(_{50}\)) of tree species in the tropics

5.1. Percentage of N remaining in leaf litter of species during the experimental period

5.2. Percentage P remaining in leaf litter of agroforestry species during the experimental period

5.3. Percentage K remaining of leaf litter of different agroforestry species

5.4. Percentage Ca remaining of leaf litter of different agroforestry species

5.5. Percentage Mg remaining of leaf litter of different agroforestry species

5.6. Correlation co-efficient of initial litter quality versus nutrient release

5.7. Linear regression of nutrient content against mass loss for nine species

5.8. Percentage nutrient immobilization of some forest and agroforestry species

6.1. Nitrogen concentration (%) in leaves of nine agroforestry species.

6.2. Foliar nitrogen resorption efficiencies of nine major agroforestry species

6.3. Nitrogen retranslocation of some tree species
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Percent remaining dry matter of nine agroforestry species</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationship between initial nitrogen content and decomposition rate (k)</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Relationship between carbon to nitrogen ratio and decomposition rate</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Annual decomposition rate constant (k) and half-life (T_{50}) of tree species in the tropics</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage of remaining N of nine agroforestry species in Sri Lanka</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage remaining P of nine agroforestry species in Sri Lanka</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage of remaining K in nine agroforestry species in Sri Lanka</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage of remaining Ca in nine agroforestry species in Sri Lanka</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>Percentage of remaining Mg in nine agroforestry species</td>
<td>83</td>
</tr>
<tr>
<td>5.6</td>
<td>Relationship between initial nitrogen content and percent nitrogen loss</td>
<td>86</td>
</tr>
<tr>
<td>5.7</td>
<td>Relationship between carbon to nitrogen ratio and percent nitrogen loss</td>
<td>87</td>
</tr>
<tr>
<td>5.8</td>
<td>Relationship between carbon to potassium ratio and percent potassium loss</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Nitrogen concentration in mature and senescent leaves of nine agroforestry species</td>
<td>100</td>
</tr>
<tr>
<td>6.2</td>
<td>Nutrient resorption efficiencies of nine agroforestry species</td>
<td>102</td>
</tr>
<tr>
<td>6.3</td>
<td>Relationship between N concentration in mature leaves and N resorption efficiency</td>
<td>104</td>
</tr>
</tbody>
</table>