TABLE OF CONTENT

Acknowledge	ement
-------------	-------

.

•

`

Abstract	
CHAPTER 1 : GENERAL INTRODUCTION	1
CHAPTER 2 : LITERATURE REVIEW	5
2.1. Present status of agriculture in Sri Lanka	5
2.2. Importance of agroforestry as a land use system in Sri Lanka	8
2.2.1 Agroforestry	8
2.2.2. Major agroforestry species occurring in wet and	
dry zones of Sri Lanka	9
2.2.3. Significance of agroforestry species	12
2.2.3.1. Ecological/Environmental aspects	12
2.2.3.2. Economical aspects	12
2.2.3.3. Social aspects	13
2.3. Nutrient cycling by agroforestry species	13
2.3.1. Litter-fall	16
2.3.2. Nutrient concentration of leaf-litter	21
2.3.3. Rate and degree of decomposition of litter	22
2.4. Factors affecting litter decomposition and nutrient release	23
2.4.1. External factors	23
2.4.2 Substrate quality	24
2.4.2.1. Polyphenol content	25
2.4.2.2. Nitrogen content and Carbon to Nitrogen ratio	25
2.4.2.3. Lignin content	27
2.4.2.4. Effect of mixing	29

2.5. Foliar nutrient resorption	30
2.5.1. Factors affecting nutrient resorption	31
2.5.2. Importance of nutrient resorption	32
2.6. Soil respirometry	33
2.7. Relevance of agroforestry species in developing sustainable	
agroecosystems	35
CHAPTER 3 :CHEMISTRY OF LEAF LITTER OF NINE TRADITIONAL	
AGROFORESTRY SPECIES	38
3.1. Introduction	38
3.2. Materials and Methods	39
3.3. Results	40
3.3.1. Concentrations of macro-nutrients (N, P, K, Ca and Mg)	40
3.3.2.Concentration of carbon, lignin, and cellulose in leaf litter	42
3.4. Discussion	43
CHAPTER 4 : DECOMPOSITION OF AND CO2 EVOLUTION FROM LEAD	7
LITTER OF NINE AGROFORESTRY SPECIES	52
4.1. Introduction	52
4.2. Materials and Methods	53
4.2.1 Site description	53
4.2.2. Litter decomposition	54
4.2.3. CO ₂ evolution from the leaf litters	55
4.2.4. Computational procedures	56
4.2.5. Statistical analyses	56
4.3. Results	57
4.3.1. Time course of decomposition of litter types	57

4.3.2. Decomposition constant and half-life of litter types	59
4.3.3. Effects of litter quality on mass loss	60
4.3.4. Soil respirometry	62
4.4. Discussion	63
4.4.1. Decomposition of leaf litter	63
4.4.2. Decomposition constant and half-life of leaf litter	66
4.4.3. Effects of initial litter chemistry on decomposition rate	67
4.4.4. CO_2 evolution from leaf litter	68
CHAPTER 5 : NUTRIENT RELEASE PATTERN OF LEAF LITTER OF NI	NE
AGROFORESTRY SPECIES	72
5.1. Introduction	72
5.2. Materials and Methods	74
5.2.1. Site description	74
5.2.2. Litter decomposition and nutrient dynamics	74
5.2.3 Computational procedure	75
5.2.4 Statistical analysis	75
5.3. Results	75
5.3.1. Nutrient release pattern	75
5.3.1.1. Nitrogen (N)	75
5.3.2.2. Phosphorus	79
5.3.2.3. Potassium	80
5.3.2.4. Calcium	82
5.3.2.5. Magnesium	83
5.3.2.6. Impact of litter quality on nutrient dynamics	85
5.3.2.7. Correlation between mass loss and nutrient dynamics	87

v

5.4. Discussion		88
	5.4.1. Nitrogen	88
	5.4.2. Phosphorus	92
	5.4.3 . Potassium	93
	5.4.4. Calcium and magnesium	93

CHAPTER 6 :NITROGEN RESORPTION EFFICIENCIES OF THE AGROFORESTRY

	SPECIES	96
6.1. Int	roduction	96
6.2. Ma	aterials and methods	98
	6.2.1. Site description	98
	6.2.2. Species studied	98
	6.2.3. Sampling	98
	6.2.4. Chemical analysis	98
	6.2.5. Calculations	99
	6.2.6. Statistical analyses	99
6.3. Res	sults	100
(6.3.1. Nitrogen concentrations in foliage	100
(6.3.2. Nitrogen resorption efficiencies (NRE)	102
. (6.3.3. Relationship between N content and Nitrogen Resorption	Efficiency
	(NRE)	103
.6.4. Dise	cussion	104
CHAPTER 7:	GENERAL DISCUSSION AND CONCLUSIONS	.110
CHAPTER 8 : 1	REFERENCES	115

.

LIST OF TABLE

.

J:-

.

Tal	ble Tittle	page
2.1	Some major agroforestry species in wet zone of Sri Lanka	10
2.2.	Some major agroforestry species in dry zone of Sri Lanka	11
2.3.	Agroforestry tree species in Sri Lanka used as livestock feed	11
2.4.	Leaf litter fall and litter quality from Marondera's miombo woodalnd	
	between July and September 1992 (% dry weight) (Mtambanengwe and	
	Kirchmann, 1995)	17
2.5.	Average annual nutrient inputs (Kg ha ⁻¹) by litter fall in monoculture	
	plantations in Karnetalia, India (Ramachandia Sawamy, 1992)	18
2.6.	Biomass and litter production in plantations at New Forest Dehra Dun in	
	India (Pande and Sharma, 1993)	18
2.7.	Litterfall and nutrient recycling of different species during September	
	1986 to August 1987 in Devbal, India (Sugar, 1989)	19
2.8.	Litter production and necycling of nutrients of 3 fast-growing species in	
	Karnataka, India	20
2.9.	Status of soil microorganisms under different fast-growing species	21
3.1.	Initial nutrient concentrations of leaf litter of various agroforestry species	41
3.2.	Initial chemical characteristics in the leaf litter of various agroforestry	
	species.	43
3.3.	Per cent nutrient concentrations in leaves/ leaf litter of some agroforestry	
2	and forestry species	48
4.1.	Climatic data from September 1996 to April 1997 at mapalana	53
4.2.	Change in mass during the decomposition of leaf litter of nine agroforestry	
	species	58
4.3.	Annual decomposition rate constant (k) and half-life (T^{0}_{50}) of nine	
	agroforestry species	60

	4.4	. Correlation co-efficient of initial litter quality versus decomposition	
		constant	61
	4.5.	Annual decomposition rate constant (k) and half-life (T^{0}_{50}) of tree	
		species in the tropics	70
	5.1.	Percentage of N remaining in leaf litter of species during the experimental	
		period	78
je	5.2.	Percentage P remaining in leaf litter of agroforestry species during the	
		experimental period	80
	5.3.	Percentage K remaining of leaf litter of different agroforestry species	81
	5.4.	Percentage Ca remaining of leaf litter of different agroforestry species	83
•	5.5.	Percentage Mg remaining of leaf litter of different agroforestry species	84
• 4	5.6.	Correlation co-efficient of initial litter quality versus nutrient release	86
	5.7.	Linear regression of nutrient content against mass loss for nine species	88
	5.8.	Percentage nutrient immobilization of some forest and agroforestry species	95
	6.1.	Nitrogen concentration (%) in leaves of nine agroforestry species.	101
	6.2.	Foliar nitrogen resorption efficiencies of nine major agroforestry species	103
	6.3	Nitrogen retranslocation of some tree species	109

ت ت

.

κ.

.

•

· · · ·

LIST OF FIGURES

Fig	ure Title	Page
4.1.	Percent remaining dry matter of nine agroforestry species	57
4.2.	Relationship between initial nitrogen content and decomposition rate (k)	61
4.3.	Relationship between carbon to nitrogen ratio and decomposition rate	62
4.4.	Annual decomposition rate constant (k) and half-life (T 0 ₅₀) of tree	
	species in the tropics	63
5.1.	Percentage of remaining N of nine agroforestry species in Sri Lanka	76
5.2.	Percentage remaining P of nine agroforestry species in Sri Lanka	79
5.3.	Percentage of remaining K in nine agroforestry species in Sri Lanka	81
5.4.	Percentage of remaining Ca in nine agroforestry species in Sri Lanka	82
5.5.	Percentage of remaining Mg in nine agroforestry species	83
5.6.	Relationship between initial nitrogen content and percent nitrogen loss	86
5.7.	Relationship between carbon to nitrogen ratio and percent nitrogen loss	87
5.8.	Relationship between carbon to potassium ratio and percent potassium loss	87
6.1.	Nitrogen concentration in mature and senescent leaves of nine	
	agroforestry species	100
6.2.	Nutrient resorption efficiencies of nine agroforestry species	102
6.3.	Relationship between N concentration in mature leaves and N resorption	
	efficiency	104
	¢ .	