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1. a) Let M = {B;, i=1,2,...,6} be a partition of the sample space S and define a sigma algebra
& generated by M as £ = o(M). Now, define a probability measure P on {S,£} by

1
4,

P(B) = 3, P(B2) = 3, P(Bs) = 5. P(Bi) = 5, P(Bs) = &, P(Be) = 2

1
87

and a random variable Z by

Z(w)=14,fweB; i=1,2,...,86.

Furthermore, let C; = By U By, Cy = B3 By,C3 = Bs U Bg and define AV to be the partition
N = {C1,C5,Cs}. Finally, let F = a(N).

Compute the conditional expectation E[Z]F).

b) Consider the stochastic process Z = (Z,, n =0,1,2,...). State the conditions for Z to be a
discrete-time martingale with respect to the filtration (Fa, n=10,1,2,...)
Suppose that X1, Xo,... are independent; identically distributed random variables with
N 1
PX1i=1)=P(X1=-1)= 5"
Let So = 0 and define S, = X7 + Xy + --- + Xp for n = 1,2,.... Then the sequence
1Gn=0,1.2 .. .} is a simple random walk starting at zero.
Show thait
(i) Mpn=0,1,2,.. .}, where M, = $2 —n_ isa martingale with respect to the filtration
Fn:jU(AIO,Mly-“,Mn) = O'(S(),Sl,. ,Sn)
(i) {Rnn=0,1, 2,...}, where R, = (sech8)" exp (S,,);n = 0, 1, 2,..., is a martingale with
I‘eSth ‘o the filtration F,, = o(Rg, Ry, ..., Rp) = 0(S0,81,--.,5).
2. a) Define the standard Brownian motion (B, t >0).
Let (€2, 7|, P) be a probability space and (B, , t > 0) be a one-dimensional Brownian motion.
Prove that
(i) for any ¢, E(B;) =0 and E(B?) =t,
(ii) for any s,t > 0, E(BsB;) = Iain(s, t),
where E denotes expectation. ,
b) Let X; and Y; be two stochastic processes. State and prove the product rule for stochastic
differentiation.

Apply the product rule to show the following. Here, B denotes Brownian motion.

(i) d(B?) = 2B;dB; + dt,



(i) d(B}) = 38B?dB, + 3Bdt,
t
(iii) Let Z; = / By, du be the integrated Brownian motion, show that dZ; = B, dt,
. :

Z
(iv) Let 4A; = f be the average of the Brownian motion on the time interval [0, ¢]. Show that
1
dA; = 7 (Bt - %Zt) dt,

c) Using the generalized Ito lemma, show that it is the function 9(t,z) = exp{z — %t} gives rise
to the Ito exponential function, not the usual function glz) = &=,

3. a) Consider the stochastic process F, = f(t)g(Bt), where f and g are differentiable functions.
Using the product rule and the simple Ito lemma, obtain the integration by parts formula

b
/ £&)d'(B)dB, = f(t)g(By)

b b b
- [ rwewya-1 [ 100w

on [a, b).
Let f(t) = e™, where a is a constant and 9(z) = cosz. Compute the stochastic integrals

T 3
/ e®* cos By dE; and / et sin B, dB;.
0 0

Obtain the results for the particular cases a — % and 8 = %

Hence and using the Euler’s formula, deduce that
a4 t T
/ exp{— +z'Bt} dB¢ =1 (1 — exp {— +iBT}) .
0 2 2
b) Let the Ito process X (t) have stochastic differential
1
dX(t) = X(t)dB(t) + §X(t) dt.

Applying simple Ito lemma for In X (¢), find a process X (t) satisfying the above stochastic
differential.

4. a) Show that the stochastic process

t
1
0 —

I8+ solution of the stochastjc differential equation
b—Y; .
Y, = l—t‘dt-f-dBt, 0<t<l, Yy=0.
You may us the resui
d ( - I L
TR} = dB,
0o 1-s T
if necessary.
b) Solve the stochastic ditsrential eqlation

dz, = 24t + €<p (%) cos B;dB;, Zg 0

and find the expectation, E[Z} and variane Var(Z;).




