

University of Ruhuna

Bachelor of Science (Special) Degree Level II (Semester II) Examination February 2018

Subject: Mathematics

Course Unit: MSP4224 (Introduction to Stochastic Analysis with Applications)

Time: Three (03) Hours

Answer ALL Questions.

1. a) Let $\mathcal{M} = \{B_i, i = 1, 2, ..., 6\}$ be a partition of the sample space S and define a sigma algebra \mathcal{E} generated by \mathcal{M} as $\mathcal{E} = \sigma(\mathcal{M})$. Now, define a probability measure P on $\{S, \mathcal{E}\}$ by

$$P(B_1) = \frac{1}{4}, \ P(B_2) = \frac{1}{4}, \ P(B_3) = \frac{1}{8}, \ P(B_4) = \frac{1}{8}, \ P(B_5) = \frac{1}{6}, \ P(B_6) = \frac{1}{12},$$

and a random variable Z by

$$Z(\omega) = i$$
, if $\omega \in B_i$, $i = 1, 2, \dots, 6$.

Furthermore, let $C_1 = B_1 \cup B_2$, $C_2 = B_3 \cup B_4$, $C_3 = B_5 \cup B_6$ and define \mathcal{N} to be the partition $\mathcal{N} = \{C_1, C_2, C_3\}$. Finally, let $\mathcal{F} = \sigma(\mathcal{N})$.

Compute the conditional expectation $E[Z|\mathcal{F}]$.

b) Consider the stochastic process $Z = (Z_n, n = 0, 1, 2, ...)$. State the conditions for Z to be a discrete-time martingale with respect to the filtration $(\mathcal{F}_n, n = 0, 1, 2, ...)$. Suppose that $X_1, X_2, ...$ are independent identically distributed random variables with

$$P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}.$$

Let $S_0 = 0$ and define $S_n = X_1 + X_2 + \cdots + X_n$ for $n = 1, 2, \ldots$ Then the sequence $\{S_n, n = 0, 1, 2, \ldots\}$ is a simple random walk starting at zero.

- (i) $\{M_n, n = 0, 1, 2, ...\}$, where $M_n = S_n^2 n$, is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(M_0, M_1, ..., M_n) = \sigma(S_0, S_1, ..., S_n)$.
- (ii) $\{R_n, n = 0, 1, 2, \ldots\}$, where $R_n = (\operatorname{sech} \theta)^n \exp(\theta S_n)$; $n = 0, 1, 2, \ldots$, is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(R_0, R_1, \ldots, R_n) = \sigma(S_0, S_1, \ldots, S_n)$.
- 2. a) Define the standard Brownian motion $(B_t, t \ge 0)$.

Let (Ω, \mathcal{F}, P) be a probability space and $(B_t, t \geq 0)$ be a one-dimensional Brownian motion. Prove that

- (i) for any t, $E(B_t) = 0$ and $E(B_t^2) = t$,
- (ii) for any $s, t \ge 0$, $E(B_s B_t) = \min(s, t)$,

where E denotes expectation.

b) Let X_t and Y_t be two stochastic processes. State and prove the product rule for stochastic differentiation.

Apply the product rule to show the following. Here, B denotes Brownian motion.

(i) $d(B_t^2) = 2B_t dB_t + dt$,

- (ii) $d(B_t^3) = 3B_t^2 dB_t + 3B_t dt$,
- (iii) Let $Z_t = \int_0^t B_u du$ be the integrated Brownian motion, show that $dZ_t = B_t dt$,
- (iv) Let $A_t = \frac{Z_t}{t}$ be the average of the Brownian motion on the time interval [0, t]. Show that

$$dA_t = rac{1}{t} \left(B_t - rac{1}{t} Z_t
ight) dt,$$

- c) Using the generalized Ito lemma, show that it is the function $g(t,x) = \exp\{x \frac{1}{2}t\}$ gives rise to the Ito exponential function, not the usual function $g(x) = e^x$.
- 3. a) Consider the stochastic process $F_t = f(t)g(B_t)$, where f and g are differentiable functions. Using the product rule and the simple Ito lemma, obtain the integration by parts formula

$$\int_{a}^{b} f(t) g'(B_{t}) dB_{t} = f(t)g(B_{t}) \bigg|_{a}^{b} - \int_{a}^{b} f'(t)g(B_{t}) dt - \frac{1}{2} \int_{a}^{b} f(t)g''(B_{t}) dt$$

on [a, b].

Let $f(t) = e^{\alpha t}$, where α is a constant and $g(x) = \cos x$. Compute the stochastic integrals

$$\int_0^T e^{\alpha t} \cos B_t dE_t \text{ and } \int_0^T e^{\beta t} \sin B_t dB_t.$$

Obtain the results for the particular cases $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{2}$. Hence and using the Euler's formula, deduce that

$$\int_0^T \exp\left\{\frac{t}{2} + iB_t\right\} dB_t = i\left(1 - \exp\left\{\frac{T}{2} + iB_T\right\}\right).$$

b) Let the Ito process X(t) have stochastic differential

$$dX(t) = X(t) dB(t) + \frac{1}{2}X(t) dt.$$

Applying simple Ito lemma for $\ln X(t)$, find a process X(t) satisfying the above stochastic differential.

4. a) Show that the stochastic process

$$Y_t = a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s, \ 0 \le t < 1, \ a, b \in \mathbb{R}$$

is a solution of the stochastic differential equation

$$dY_t = \frac{b - Y_t}{1 - t} dt + dB_t, \ 0 \le t < 1, \ Y_0 = 0.$$

You may us the result

$$d\left(\int_0^t \frac{1}{1-s} \operatorname{cq}_s\right) = \frac{1}{1-t} dB_t$$

if necessary.

b) Solve the stochastic differential equation

$$dZ_t = t^2 dt + \exp\left(\frac{t}{2}\right) \cos B_t dB_t, \quad Z_0 = 0,$$

and find the expectation, $E[Z_t]$ and variance $Var(Z_t)$.