UNIVERSITY OF RUHUNA

BACHELOR OF SCIENCE SPECIAL DEGREE LEVEL I (Semester II) EXAMINATION DECEMBER- 2017

Subject: PHYSICS

Course unit: PHY4112, Electronics II

TIME: 02 hours

Answer FOUR (04) questions only

Q1.

a) Design a logic circuit that has three inputs, A, B and C, and which will produce HIGH output only when two or more inputs are HIGH.

[07 marks]

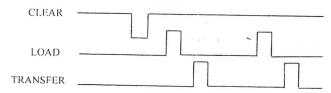
- b) In an audio CD, the audio voltage signal is typically sampled about 44,000 times per second, and the value of each sample is recorded on the CD surface as a binary number. The each recorded binary number represents a single point on the audio signal wave form.
 - i. If the binary numbers are six bits in length, how many different voltage values can be represented by a single binary number? Repeat for eight bits and ten bits.
 - ii. If ten-bit numbers are used, how many bits will be recorded on the CD in one second?
 - iii. If a CD-ROM can store 650 megabytes, how many seconds of audio can be recorded when ten-bit numbers are used (mega $=2^{20}$).

[09 marks]

- c) The movement of binary data and codes from one location to another is the most frequent operation performed in a digital system.
 - i. What is the major cause of error in transmission process?
 - ii. Why this error is significant?
 - iii. Briefly discuss the parity method in detecting the error code.

[09 marks]

- Q2. Digital systems obtain binary coded data and information that are continuously being operated on in some manner like decoding and encoding, multiplexing and demultiplexing etc.
 - i. What are the functions of decoder and encoder?
 - ii. Discuss an application of a priority encoder.
 - iii. Using Karnaugh map or other method design logic circuit diagram for 4-input priority encoder (4 to 2 line priority encoder).
 - iv. What are the functions of multiplexer and demultiplexer?
 - v. Giving relevant gate combinations explain the function of a circuit of two-input multiplexer. [25 marks]

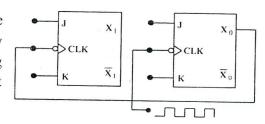

Q3.

Several parallel adders are available as ICs. The most common is four-bit parallel adder, illustrated in the figure. All the bits of A and B are fed into the adder circuits simultaneously and therefore parallel addition is very fast.

- i. Construct logic circuit diagram for a single bit full adder circuit.
- ii. What are A, B and C circuits of the given full adder?
- iii. Write down the sequence of operation of the complete adder by following the given timing diagram.

CLEAR

(out.2



- iv. What is the main cause of delay in an adder circuit and what remedy has been used in this circuit to overcome the delay?
- v. Draw necessary modification to perform subtraction operations using the same circuit.

 [25 marks]

Q4.

Clocked flip-flops are versatile devices that can be used in variety of applications including frequency division and counting. Figure shows the wiring arrangement of two J-K flip-flops to form a two bit binary counter.

C

4 Bit Parallel Adder

741 5283

LOAD

a)

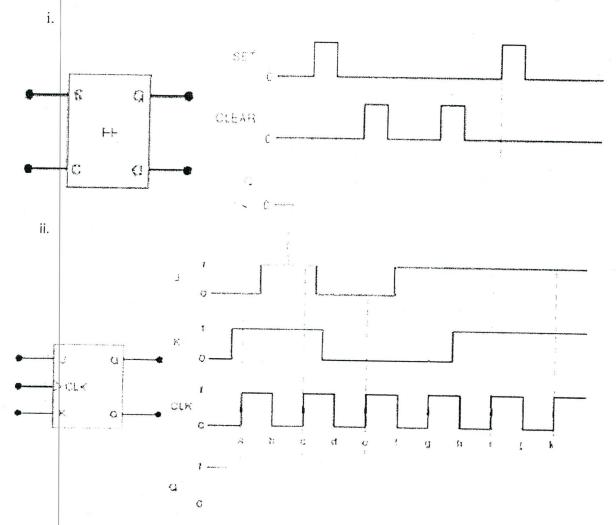
- i. Extend the flip-flop arrangement for 3-bit asynchronous (ripple) up counter.
- ii. What is meant by up counters and down counters and what changes has to be taken to convert this to down counter?
- iii. By drawing all waveforms explain the operation of a 3-bit up counter.
- iv. Write down all possible counting operations for 3-bit up counter.
- v. Modify the same counter to perform the counting operations only between 2 and 5.

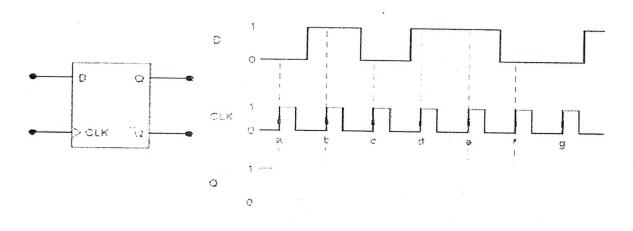
[18 marks] Continue to next page..

b)

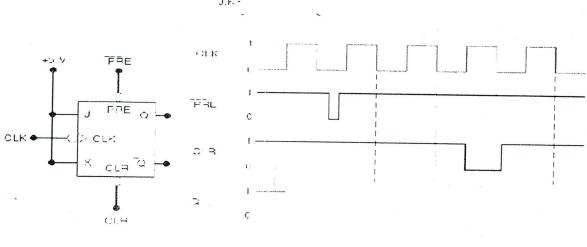
- i. Design a logic circuit for 3-bit synchronous up counter.
- ii. "Counting operations of synchronous counters are stable than asynchronous counters". Explain this statement briefly.

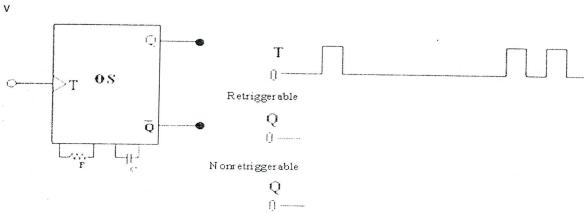
[07 marks]


Q5.


- a) Discuss any two of the following Flip-Flop applications.
 - i. Flop-Flop synchronizations
 - ii. Detecting the input sequence
 - iii. Serial data transfer

[05 marks]


b) Use same sheet to answer this question and attached with your answer scripts.


Complete the output wave forms of given flip-flops (i to v) according to their inputs.

iv

(Note: Quasi stable interval is 2 ms (> width of the clock pulse) for both cases)

[20 marks]