

UNIVERSITY OF RUHUNA – FACULTY OF ALLIED HEALTH SCIENCES <u>DEPARTMENT OF PHARMACY</u>

THIRD BPHARM PART I EXAMINATION – JULY 2018 PH 3113 ANALYTICAL CHEMISTRY (SEQ)

TIME: TWO HOURS

INSTRUCTIONS

- There are four (04) questions in parts A, B and C of the paper.
- Answer each part in a separate booklet provided.
- Do not use any correction fluid.
- Marks will be deducted for illegible hand writing.
- Use of calculators is allowed.

PART A

- 01 Answer all parts.
 - 1.1. What is the ISO definition of "Quality"?

(15 marks)

1.2. Briefly explain the importance of "quality" in pharmacy/pharmaceutical industries.

(15 marks)

- 1.3. List five important characteristics of quality assessment of pharmaceuticals. (10 marks)
- 1.4. Uniformity is one of the most important characteristic of pharmaceutical quality. Explain how it is determined in different dosage forms. (15 marks)
- 1.5. State what is meant by "method validation".

(15 marks)

1.6. List ten parameters of method validation.

(20 marks)

1.7. Give five sources of impurities in pharmaceuticals.

(10 marks)

PART B

- 02. Answer all parts.
 - 2.1 Give the definitions of the terms molarity and molality.

(08 marks)

- 2.2 A 500.00 cm³ of 0.0020 N H₂SO₄ acid is mixed with 0.0200 g of NaOH. Calculate the concentration of the resulting solution *in ppm*. (*Relative molar mass of H₂SO₄ acid and NaOH are 98 and 40 respectively*). (10 marks)
- 2.3 What is a buffer solution?

(04 marks)

2.4 What are the **two** factors that affect the pH of a buffer?

(04 marks)

- 2.5 A 250.00 cm³ of a buffer solution **A** was prepared by dissolving 4.32 g of acetic acid and 1.50 g of sodium acetate. (*The dissociation constant of acetic acid is 1.8 x 10⁻⁵ at 25 °C and the molecular weights of acetic acid and sodium acetate are 60 and 82 g/mol respectively*).
 - 2.5.1 Calculate the pH of the buffer solution A.

(10 marks)

- 2.5.2 A new buffer solution B was prepared by adding 4.30 g of NaOH into solution A and diluting it up to 1.00 dm³ with distilled water. Calculate the pH change that you expect in solution B. (10 marks)
- 2.5.3 Which one of the above two buffers (A or B) would be the best buffer? Give reasons. (04 marks)

PART C

2.6 The following graph shows how the pH changes during the titration of 10.00 cm³ of a solution of a weak acid (HA) with 0.1000 mol dm⁻³ NaOH.

- 2.6.1 What is the pH at the equivalence point and explain why the pH changes rapidly in this region. (10 marks)
- 2.6.2 Calculate the initial concentration of the acid (HA).

(20 marks)

2.6.3 Calculate the $[H^+]$ of the acid before any sodium hydroxide is added. Use this value to determine the K_a value and the pK_a value of the acid.

(20 marks)

- 03. Answer all parts.
 - 3.1 Suppose that you need to determine the concentrations of Mg^{2+} and Zn^{2+} in a mixture.
 - 3.1.1 Calculate the conditional formation constants for MgY²⁻ and ZnY²⁻ at pH 4 and 10 and show how pH control provides some selectivity for EDTA titrations. Log K_f of MgY and ZnY are 8.69 and 16.5 respectively and α_{Y4-} of EDTA is 3.61 x 10⁻⁹ (at pH 4.00) and 0.35 (at pH 10.00).

- 3.1.2 A 25.00 cm³ aliquot of a mixture containing Mg²⁺ and Zn²⁺ was buffered at pH 10 and titrated with 0.0488 *mol dm*³ EDTA. The endpoint volume is 34.27 cm³. A second 25.00 cm³ aliquot of the above Mg/Zn mixture was buffered at pH 4 and titrated with the same EDTA solution. This time the endpoint volume is 22.56 cm³. Calculate the molar concentrations of Mg²⁺ and Zn²⁺. (30 marks)
- 3.2 A solid sample (0.2661 g) contains only with NaCl and KBr was dissolved in water and required 2.00 L of 0.00150 mol dm⁻³ AgNO₃ to precipitate all Cl⁻ and Br⁻. The molecular weights of NaCl and KBr are 58.4 and 119.0, respectively. Calculate how many moles of KBr are contained in the solid sample. (30 marks)

04. Answer all parts

4.1 Define the following types of solvents:

4.1.1 amphioprotic (10 marks)
4.1.2 nonionizable with basic properties (10 marks)
4.1.3 inert (10 marks)

- 4.2 Categorize the following solvents into three general types.
 Acetic acid, carbon tetrachloride, dimethyl other, dioxane, methanol, pyridine, petroleum ether.
- 4.3 Give the reasons for using mercuric acetate in certain non aqueous titrations. (15 marks)
- 4.4 Calculate the electrode potential for the titration of 50.00 cm³ of 0.1000 mol dm^{-3} V²⁺ with 0.0500 mol dm^{-3} Sn⁴⁺ at the 50.00 cm³ volume of titrant. The relevant half reactions are:

$$V^{3+} + e \rightarrow V^{2+}$$
 $E^{\circ} = -0.256$
 $Sn^{4+} + 2e \rightarrow Sn^{2+}$ $E^{\circ} = 0.154$

(40 marks)

@@@@@@@@@@@