

UNIVERSITY OF RUHUNA – FACULTY OF MEDICINE

ALLIED HEALTH SCIENCES DEGREE PROGRAMME FIRST BPHARM PART II EXAMINATION - FEBRUARY 2013 PH 1262 - BIOSTATISTICS I

DATE: 22.02.2013

TIME: 9.00 a.m -11.00 a.m

INDEX NO:

INSTRUCTIONS

- No paper should be removed from the examination hall.
- Marks will be penalized for illegible hand writing.
- Do not use any correction fluid.
- Answer all Questions.
- a) State the Bayes' rule in the usual notation.
 - b) Suppose that infants are classified as low birth weight if they have a birth weight $\leq 2500g$ and as normal birth weight if they have a birth weight $\geq 2501g$. Suppose that infants are also classified by period of gestation in the following four categories:

<20 weeks, 20-27 weeks, 28-36 weeks, >36 weeks. policy of mobiles and 1.00 zi

Assume that the probabilities of the different periods of gestation are as given in the following table:

Period of gestation	Probability
<20 weeks	0.0004
20-27 weeks	0.0059
28-36 weeks	0.0855
>36 weeks	0.9082

zotian levels in smokers are modeled by a random variable T

Also assume that the probability of being low birth weight given that the period of gestation is <20 weeks is 0.54, the probability of being low birth weight given that the period of gestation is 20-27 weeks is 0.813, the probability of being low birth weight given that the period of gestation is 28-36 weeks is 0.379, and the probability of being low birth weight given that the period of gestation is >36 weeks is 0.035.

- i. Find the probability of having a low birth weight infant.
- ii. Find the probability of having a period of gestation 28-36 weeks given that a child is low birth weight.

2. Consider a family with a mother, father and two children of ages 7 and 5 years respectively. Let $A_1 = \{$ mother has influenza $\}$, $A_2 = \{$ father has influenza $\}$, $A_3 = \{$ first child has influenza $\}$, and $A_4 = \{$ second child has influenza $\}$.

a)

- i. What does $A_1 \cup A_2$ mean?
- ii. What does $A_1 \cap A_2$ mean?
- iii. Are A_3 and A_4 mutually exclusive? Explain your answer.
- b) Suppose that an influenza epidemic strikes the city where the above family live. In 10% of families the mother has influenza; in 10% of families the father has influenza; and in 2% of families both the mother and father have influenza.
 - i. Write $P(A_1)$, $P(A_2)$ and $P(A_1 \cap A_2)$.
 - ii. Find $P(A_1 \cup A_2)$.
- c) Let X be the random variable representing the number of adults with influenza in a family considered in part (b).
 - i. Show that the possible values for X are 0, 1 and 2.
 - ii. Find the probability distribution for this random variable.
 - iii. Calculate its expected value.
 - iv. Calculate its variance.

(30 marks)

- 3. The probability that a person suffering from migraine will obtain relief with a particular drug is 0.9. Three randomly selected suffers from migraine are given the drug. Find the probability that the number obtaining relief will be:
 - a) Exactly one.
 - b) More than one.
 - c) Two or fewer.
 - d) Two or three.

(20 marks)

- 4. Nicotine levels in smokers are modeled by a random variable *T* with a normal distribution with mean 315 and standard deviation 131. The distribution are modeled by a random variable *T* with a normal distribution with mean 315 and standard deviation 131.
 - a) What is the probability that T is more than 450?
 - b) What is the third quartile of the nicotine level distribution?
 - c) What is the probability $P(150 \le T \le 400)$?
 - d) What nicotine level is such that 20% of smokers have a higher level?
 - e) What is the probability that a smoker's nicotine level is between 215 and 300 or between 350 and 400?

(30 marks)