Contents

Declaration ii

Contents v

List of Tables ix

List of Figures x

List of Abbreviations xiv

Abstract xvi

1 Introduction 1

1.1 An introduction about hoppers 1

1.2 Traditional method of making hoppers 1

1.2.1 Most common ingredients of flour mixture 2

1.2.2 Basic method of making hoppers 2

1.2.3 Different energy sources of making hoppers 3

1.3 Existing technology for making hoppers 3

1.4 Different types of hoppers 4

1.4.1 Making plain hoppers 4

1.4.2 Making egg hoppers 5

1.4.3 Making milk hoppers 5

1.5 Problems encountered in making hoppers by traditional methods 6

1.5.1 Heat controlling of the cooking system 6

1.5.2 Keeping the individual attention on pans when using several pans 7

1.5.3 Applying oil or lubrication inside the pan 7
CONTENTS

1.5.4 Spreading the flour mixture inside the pan ... 8
1.5.5 Removing cooked hoppers from the pan .. 8
1.5.6 Recipe of the flour mixture ... 8
1.5.7 Qualitative properties of the pan... 8
1.5.8 Duration of the cooking process... 9

1.6 Problems in commercial production ... 9
1.6.1 Insufficient supply to meet the demand ... 10
1.6.2 Lack of quality and freshness of cooked hoppers 10
1.6.3 Higher labour cost of the production .. 11
1.6.4 Lifetime and crispness of cooked hoppers ... 11

1.7 Identification of areas for improvement ... 11
1.7.1 Spreading of flour mixture ... 12
1.7.2 Weight and uniformity of hoppers .. 12
1.7.3 Heat control and wastage of cooking fuel .. 13
1.7.4 Wastage of raw materials .. 14
1.7.5 Low efficiency ... 15
1.7.6 Production cost of hoppers ... 15

2 Design of the machine 16
2.1 Design of the machine .. 16
2.1.1 Frying Pan System (FPS) .. 17
2.1.2 Frying Pan System Driving Unit (FPSDU) ... 18
2.1.3 Frying Pan System Controlling Unit (FPSCU) 19
2.1.4 Flour Mixture Flow Controller (FMFC) ... 20
2.1.5 Mixture Spreading System (MSS) ... 22
2.1.6 Frying Pan Detecting Sensor (FPDS) .. 23
2.1.7 Electronic Controlling System (ECS) ... 24
2.1.7.1 555 Timer IC .. 24
2.1.8 Burner System (BS) .. 28

3 Second Model of the Machine 30
3.1 Frying Pan System Driving Unit (FPSDU) ... 31
3.2 Frying Pan System Controlling Unit (FPSCU) .. 31
CONTENTS

3.2.1 Principle of operation the IPS .. 33
3.3 Flour Mixture Flow Controller (FMFC) .. 34
3.4 Mixture Spreading System (MSS) .. 34
3.5 Electronic Controlling System (ECS) ... 36

4 Low cost electronically improved machine 39
 4.1 Modification of the FMFC ... 39
 4.1.1 A low cost automated device to release a certain volume of liquid 44
 4.1.2 Methodology of the liquid measuring device 44
 4.2 Modification of the Mixture Spreading System (MSS) 49
 4.3 Modification of the ECS ... 50
 4.3.1 Microcontroller program of the AECS 52
 4.4 Introducing the Pan Lid Detecting Sensor (PLDS) 58
 4.5 Semi Automated Hopper-Making Machine 60
 4.5.1 Making hoppers by the SAHMM .. 61

5 Analysis .. 62
 5.1 Flour mixture content of hoppers ... 63
 5.2 Effect of adding eggs into the flour mixture 63
 5.3 Effect of adding sugar into the flour mixture 65
 5.4 Use of baking powder ... 66
 5.5 Different methods of preparation of the flour mixture 67
 5.5.1 Procedure for the preparation of flour mixture in the manual... 67
 5.5.2 Procedure of preparation of the flour mixture in the mechanical... 68
 5.6 Analysis of the manual process of making hoppers 69
 5.6.1 Variation of gas consumption ... 70
 5.6.1.1 Normalized variation of gas consumption...................... 71
 5.6.2 Variation of the number of hoppers produced from 1kg............ 72
 5.6.2.1 Normalized average number of hoppers....................... 72
 5.6.3 The average gas consumption for a single hopper 73
 5.6.3.1 Normalized average gas consumption......................... 74
 5.6.4 Gross weight of the mixture of 1kg of flour 75
 5.6.5 Average weight of a hopper .. 76
5.6.6 The time taken for making hoppers from 1kg of flour 76
5.6.7 Average cooking time of a hopper ... 77
5.7 Analysis of the mechanical process of making hoppers 79
5.7.1 Gas consumption for 1kg of flour ... 79
5.7.2 The time taken for making hoppers from 1kg of flour 80
5.8 Quality of hoppers made from the machine 80
5.9 Comparison of the production efficiency of making hoppers 81
5.10 Comparison of cost analysis of making hoppers 81
5.11 A simple device to reduce the wastage of cooking gas 83
5.12 Methodology .. 83
5.12.1 Optimum vertical gap between the burner and the cooking pan ... 84

6 Conclusion and discussion 89
6.1 Conclusion .. 89
6.2 Discussion .. 91
6.2.1 Important trouble shooting tips for making hoppers 91
6.3 Further improvements .. 92
6.3.1 Design an automated system for removing cooked hoppers ... 93
6.3.2 Further improvement of FPDS .. 93
6.3.3 Further improvement of burner controlling system 93

Bibliography 94

A Drawings related to the Chapter 3 98

B Awards and Certificates received for the invention 132
B.1 Sri Lankan patent certificate ... 132
B.2 The University of Ruhuna Vice Chancellor’s award 133
B.3 First place of presidential awards for the patented inventions...... 133
B.4 Third place at the 37th International exhibitions 133
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Specifications of the Inductive Proximity Sensor (PSO1)</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>Statistical data form template</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>The nutrient composition of the chicken egg</td>
<td>64</td>
</tr>
<tr>
<td>5.3</td>
<td>Collected data</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Number of hoppers cooked per hour</td>
<td>78</td>
</tr>
<tr>
<td>5.5</td>
<td>Measured data for 1kg of dry flour using the machine</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of gas consumption between the manual and the mechanical...</td>
<td>79</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of time taken for making hoppers...</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison of the number of hoppers produced from 1kg of flour with...</td>
<td>81</td>
</tr>
<tr>
<td>5.9</td>
<td>Cost analysis in the manual processes of making hoppers</td>
<td>82</td>
</tr>
<tr>
<td>5.10</td>
<td>Cost analyze in the mechanical processes of making hoppers</td>
<td>82</td>
</tr>
<tr>
<td>5.11</td>
<td>Comparison of experiments</td>
<td>87</td>
</tr>
<tr>
<td>5.12</td>
<td>Time taken to reach the boiling point</td>
<td>88</td>
</tr>
<tr>
<td>6.1</td>
<td>Estimated results for 1kg of dry flour in the manual process</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Estimated results for a single hopper in the manual process</td>
<td>90</td>
</tr>
<tr>
<td>6.3</td>
<td>Estimated results for 1kg of dry flour in the machinery process</td>
<td>90</td>
</tr>
<tr>
<td>6.4</td>
<td>Estimated results for a single hopper in the machinery process</td>
<td>90</td>
</tr>
<tr>
<td>A.1</td>
<td>Part list No.1</td>
<td>128</td>
</tr>
<tr>
<td>A.2</td>
<td>Part list No.2</td>
<td>129</td>
</tr>
<tr>
<td>A.3</td>
<td>Part list No.3</td>
<td>130</td>
</tr>
<tr>
<td>A.4</td>
<td>Part list No.4</td>
<td>131</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Left: Cooked hoppers and Right: Frothy pulp .. 5
1.2 Left: Well prepared flour mixture and Right: Making hoppers 5
1.3 Wastage of raw materials ... 14

2.1 Structure of the frying pan system ... 17
2.2 Top view of the frying pan system .. 18
2.3 Frying pan system driving unit ... 19
2.4 Frying pan system controlling unit ... 19
2.5 Flour mixture flow controller .. 20
2.6 Valve controlling unit .. 21
2.7 Flour mixture container setup .. 22
2.8 Flour mixture spreading system ... 23
2.9 Frying pan detecting sensor ... 24
2.10 Schematic diagram of 555 .. 25
2.11 Astable mode timer circuit .. 26
2.12 Charging and discharging of the capacitor and output of 555 26
2.13 Functional type of 555 .. 26
2.14 Relay circuit of the AHMM .. 28
2.15 Burner system .. 29
2.16 Complete functional hopper-making machine (Model 1) ... 29

3.1 Inductive Proximity Sensor (PSO1) .. 32
3.2 Main components of an IPS .. 33
3.3 Function of an IPS .. 33
3.4 Timer circuit with BD 137 Transistor .. 36
LIST OF FIGURES

3.5 Timer circuit with BD 138 Transistor .. 36
3.6 Relay circuit controlled by four timer circuits .. 37
3.7 Second model of the machine ... 38

4.1 Filling process of trapping container .. 40
4.2 Releasing process of trapping container ... 41
4.3 Top view of the modified flour mixture flow controller 43
4.4 Bottom view of the modified flour mixture flow controller 43
4.5 The automated device .. 45
4.6 Filling the sub container when the solenoid is switched off 46
4.7 Releasing the liquid when the solenoid is turned on 46
4.8 Device controlling timer circuit ... 48
4.9 Distribution of measured data .. 49
4.10 Lever system .. 50
4.11 Microcontroller circuit ... 51
4.12 Power supply circuit .. 52
4.13 FDS and SDM module command flow charts 55
4.14 System command flow chart ... 56
4.15 Cup up and cup down module command flow charts 57
4.16 MSM module flow chart .. 57
4.17 Schematic diagram of pan lid detecting sensor 58
4.18 Pan lid detecting sensor ... 59
4.19 Top view of low cost electronically improved machine 59
4.20 Semi automated hopper-making machine .. 60

5.1 The structural components of the egg .. 64
5.2 Variation of gas consumption with the operator for 1kg of flour 70
5.3 Normalized variation of gas consumption with the operator for 1kg of flour ... 71
5.4 Variation of the number of hoppers with the operator from 1kg of flour 72
5.5 Normalized variation of number of hoppers produced from 1kg of dry flour ... 73
5.6 Variation of gas consumption with the operator for a single hopper 74
5.7 Variation of gas consumption with the operator for 1kg of flour 74
5.8 Variation of gross weight of the mixture from 1kg of flour 75
LIST OF FIGURES

5.9 The average weight of a hopper ... 76
5.10 Time taken for making hoppers from 1kg of flour 77
5.11 The average cooking time of a hopper ... 78
5.12 Experimental setup .. 84
5.13 Comparison of the variation of temperature with time 85
5.14 Structure of the energy saving cooking device (Model 1) 85
5.15 Comparison of the variation of temperature with time 86
5.16 Structure of the energy saving cooking device (Model 2) 87

6.1 Cyclic process of a successful invention .. 92

A.1 Part drawing 1 .. 99
A.2 Sectional elevation of the second model of the machine 100
A.3 Part drawing 1A .. 101
A.4 Part drawing 1C .. 102
A.5 Part drawings 1Ca, 1Cc, 1Da and 1Fa ... 103
A.6 Part drawings 1F and 1D .. 104
A.7 Part drawings 1Fc, 1Fg, 1Fb and 1Fn ... 105
A.8 Part drawing 1G .. 106
A.9 Part drawing 3 .. 107
A.10 Part drawing 3A ... 108
A.11 Part drawings 3F, 3B, 3K and 3H .. 109
A.12 Part drawing 5 .. 110
A.13 Part drawings 5J, 5A, 5L, 5G and 5R ... 111
A.14 Part drawings 5C, 5H and 5Et .. 112
A.15 Part drawing 5E .. 113
A.16 Part drawings 5Ep, 5Ed and 5Ea ... 114
A.17 Part drawings 5En, 5Ev, 5Ef, 5Ef and 5Er ... 115
A.18 Part drawing 7 .. 116
A.19 Part drawing 7A ... 117
A.20 Part drawings 7D and 7B .. 118
A.21 Part drawing 9 .. 119
A.22 Part drawings 9B, 9F, 9H and 9T .. 120
LIST OF FIGURES

A.23 Part drawing 9E ..121
A.24 Part drawings 9J, 9S, 9R and 9N ...122
A.25 Part drawing 9M ...123
A.26 Part drawings 9Ea, 9Mh, 9Eb, 9Me and 9Ed ...124
A.27 Panel board ..125
A.28 Control switch diagram ..126
A.29 Aluminium frying pan ..127

B.1 Page-1: Sri Lankan Patent of the AHMM ..134
B.2 Page-2: Sri Lankan Patent of the AHMM ..135
B.3 Page-1: Agreement between IDB ...136
B.4 Page-2: Agreement between IDB ...137
B.5 IDB manufacturing automated hopper-making machines in Matara branch138
B.6 Certificate offered for the Vice Chancellor’s award...139
B.7 Trophy received for the Vice Chancellor’s award..139
B.8 Certificate offered for the first place of presidential awards..140
B.9 Trophy received for the first place of presidential awards...140
B.10 Gold medal received for the first place of presidential awards......................................141
B.11 Certificate offered in the 37th International Exhibition held in Geneva142
B.12 Bronze medal received in the 37th International Exhibition held in Geneva143