
sensors

Article

Performance Analysis of Distributed Estimation for
Data Fusion Using a Statistical Approach in Smart
Grid Noisy Wireless Sensor Networks

Chatura Seneviratne 1, Patikiri Arachchige Don Shehan Nilmantha Wijesekara 1,* and
Henry Leung 2

1 Department of Electrical and Information Engineering, Faculty of Engineering, University of Ruhuna,
Galle 80000, Southern Province, Sri Lanka; chatura@eie.ruh.ac.lk

2 Department of Electrical and Computer Engineering, Faculty of Information and Communication
Technology, University of Calgary, Calgary, AB T5J0N3, Canada; leungh@ucalgary.ca

* Correspondence: nilmantha@eie.ruh.ac.lk; Tel.: +94-710-651-856

Received: 5 December 2019; Accepted: 16 January 2020; Published: 20 January 2020
����������
�������

Abstract: Internet of Things (IoT) can significantly enhance various aspects of today’s electric
power grid infrastructures for making reliable, efficient, and safe next-generation Smart Grids
(SGs). However, harsh and complex power grid infrastructures and environments reduce the
accuracy of the information propagating through IoT platforms. In particularly, information is
corrupted due to the measurement errors, quantization errors, and transmission errors. This leads
to major system failures and instabilities in power grids. Redundant information measurements
and retransmissions are traditionally used to eliminate the errors in noisy communication networks.
However, these techniques consume excessive resources such as energy and channel capacity and
increase network latency. Therefore, we propose a novel statistical information fusion method not
only for structural chain and tree-based sensor networks, but also for unstructured bidirectional
graph noisy wireless sensor networks in SG environments. We evaluate the accuracy, energy savings,
fusion complexity, and latency of the proposed method by comparing the said parameters with
several distributed estimation algorithms using extensive simulations proposing it for several SG
applications. Results prove that the overall performance of the proposed method outperforms other
fusion techniques for all considered networks. Under Smart Grid communication environments,
the proposed method guarantees for best performance in all fusion accuracy, complexity and energy
consumption. Analytical upper bounds for the variance of the final aggregated value at the sink node
for structured networks are also derived by considering all major errors.

Keywords: data fusion; distributed estimation; energy efficiency; latency; fusion complexity;
information accuracy; internet of things; smart grid communications

1. Introduction

1.1. Motivation

Smart Grid (SG) is the 21st century electric power grid infrastructure that has been proposed to
improve the efficiency, reliability, and safety of the 20th century hierarchical, centrally controlled power
generation, transmission, and distribution methods [1,2]. These improvements can be established by
introducing two-way electrical and information flows for traditional power grids. Smooth integration
of renewable energy sources and modern information and communication technologies are the key
milestones in the process of transition from a traditional power grid to SG [3,4].
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Smart Grid Architecture basically consists of three layers: the Application layer, power layer,
and communication layer. Application layer consists of interoperable advanced applications, whereas
the power layer integrates renewable energy sources into power generation system and two way
communication into all power generation, transmission and distribution system, and customer
premises [3]. This paper directly addresses aspects on Application layer and communication layer.

When considering about the communication layer, information and communication technologies
provide a platform to collect this information from different entities in SGs. The most attractive platform
is the Internet of Things (IoT) which is a network of connected devices [5–7]. In SG environments,
the end device of the IoT platform is a smart object that has the sensing, processing and networking
capabilities [8]. Typical examples are sensor nodes and Radio Frequency Identification Devices
(RFIDs) [9,10]. The accuracy of the information produced by these devices is a key factor for reliable
power delivery from generation to end user in SGs. The information generated by these devices is
contaminated by measurement noise and quantization noise [11,12]. Thus, it is more reliable to gather
information from multiple end devices corresponding to a single physical phenomenon. As these
devices are not expensive and small in size, it is feasible to deploy these devices in larger quantities.
Usually, these devices are not directly interfaced to the internet backbone. There exists a fewer number
of units that are capable to collect all information of these devices and route them to the internet
backbone. There are back-bone points, back-haul aggregation points, and access points at the end
of Wide Area Networks (WANs), Field Area networks (FANs) and Home Area Networks (HANs),
respectively. These aggregating nodes are called as sink nodes. Effective information gathering
methods are essential to propagate the information from end devices to sink node.

Sensor nodes need to be energy efficient since the sensor nodes have a limited energy.
Information gathering using wired cable is not feasible in SG environments due to electromagnetic
interference from power lines, incompatibility to wide area network architecture, and availability
only to licensed users despite the available resources of power lines and low latency communication.
When the wireless sensors network is equipped with cognitive radio, which dynamically access
the spectrum, the spectrum efficiency increases and interferences and congestion decreases, and
communication errors can be further reduced in SGs [13]. In particularly, installation of expensive
cables and regular maintenance of them are an additional burden for SGs. The most cost effective and
easiest approach is to use wireless medium. It can be realized through modern IoT end devices that
have wireless capabilities [14]. However, drastic environmental conditions such as highly caustic or
corrosive environments, high humidity levels, vibrations, dirt and dust, which exist in SG environments
can cause high bit error rates during transmissions. In addition, wireless communication is prone
to multipath fading and channel characteristic can be dynamic. Therefore, bit errors which occur
during the wireless communication added with quantization and sensor noise will degrade the overall
accuracy of the sensed parameter.

Bit errors can be reduced to a certain level by information retransmissions and by using
forward error correction methods [15]. The trade-off is excessive resource consumption such as
energy and channel capacity. As energies of the sensor nodes are also limited, retransmission
must be limited. It is specified in [15] that retransmission of a whole information frame/packet
to correct a few error bits in an information frame/packet is a waste which confirms the preceding
argument. Furthermore, restrictions have been made to maximum number of retransmission attempts
in wireless standards [16,17]. These retransmissions are acknowledgment-based retransmissions.
In harsh environmental conditions in SGs, these retransmission frames/packets and acknowledgment
frames/packets themselves can be lost.

Additionally, low latency communication requirement for mission critical applications,
heterogeneous network structure and traffic, and resource (energy, memory and processing) constraints
are challenges that exist for wireless sensor networks in SGs [3,13,18]. Latency is the network delay,
which is expressed as a time for a data frame/packet to successfully travel from one point to another.
Intelligent cognitive radio-based SG can greatly reduce the latency and are aware of heterogeneous
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networks achieving the required quality of service for SGs [13,19]. The latency requirement specifies
that maximum tolerable latency should be 10 ms when the power grid is not broken down into
asynchronous sections (non-islanding) and 100 ms for islanded (asynchronous) smart grid systems [20].
Preceding latency requirement was specified for the whole smart grid considering all the applications.
However, the latency requirement can vary vastly based on the specific smart grid application [1].
The general recommendation is to use wired media such as fiber optic cables or transmit wireless using
Wi-MAX to maintain latency less than 10 ms in Smart Grids covering a bigger area such as WANs.
The performance analysis considered in this context particularly aims to address SGs consisting of
FANs and HANs in which there is no requirement for mission critical applications having very low
latency requirements, but having applications which have a maximum tolerable latency of 300 ms.
Zig-Bee or Bluetooth can be used in HANs and Wideband Code Division Multiple Access (WCDMA)
in FANs for Smart Grid WSNs [1]. As the transmission distance is relatively low (<10 km per link) in
HANs and FANs, they can satisfy the low latency requirement of 300 ms for considered applications
in this context in SG communication even under low data rates (10s to 100s of kbps).

When considering the application layer in traditional power grids, power disturbances and
outages occur due to equipment failures, capacity limitations, and natural accidents. These problems
can be largely avoided through real time power grid condition monitoring and controlling.
In generation side, renewable energy farms located in remote geographical areas must be frequently
monitored. Critical parameters of solar farms such as radiation and temperature values, DC voltage
and weather conditions are required to be collected in a timely manner. In distribution and transmission
side, power quality, overhead, and underground cable conditions, conductor temperature and dynamic
thermal rating must be collected. Gathered information will pave the way to take early precautionary
measures. Therefore, an accurate, less complex and energy efficient data fusion technique is required
which causes less network delay. We prove that the proposed statistical data fusion technique is
such a fusion method that targets Specific SG applications such as Home Energy Management (HMI),
Advanced Metering Infrastructure (AMI), outage management, demand response management, asset
management, distributed energy resource and storage, vehicle to grid energy transferring, electric
vehicle charging, etc., in which latency requirement is higher than 300 ms [3]. The security aspect of
these SG applications are not considered in this context.

IoT end devices have short range transmission capabilities and energy constraints [8]. Thus,
centralized estimation by direct information transmission between IoT end devices and internet
back bone connected devices are not feasible [21]. Therefore, multi-hop transmissions are required.
The chain-based and tree-based topological structures are more realistic to use for multi-hop
transmissions in SG environments. For example, the chain structure is well suited to deploy on
overhead/underground cables and thermal conductors, whereas the tree structure is well suited to
be deployed in larger areas such as wind or solar farms. Furthermore, these structures are simple to
implement and easier to scale. Transmitting all the information collected in end devices is the simplest
multi-hop information gathering approach. However, this introduces an unnecessary redundant
information transmissions that require excessive resources in terms of energy compared to serial
distributed detection [22]. Therefore, effective information fusion technique of distributed estimation
is needed to combine the information at intermediate devices [23,24].

1.2. Review of Data Aggregation

Conventional information fusion functions, which can be incorporated irrespective of parallel
of serial information fusion, are type-sensitive, and type threshold symmetric functions such as
Average (AVG), Maximum (MAX), Minimum (MIN), Mode, mean of k largest values, etc. [25].
For single bit quantization of data, for instance in the case of decision fusion; OR, AND, K out of N,
MAJORITY functions has been used where the performance of information accuracy depended on the
measurement frequency and number of nodes [26–28]. The Chair Varnish Rule has been presented
as the optimum one-bit fusion technique, but in this technique, it is needed to know the probability



Sensors 2020, 20, 567 4 of 45

of detection and failure for all sensor nodes at the fusion center which is a major drawback [29,30].
These information fusion functions combine the information frames/packets from multiple nodes to a
single frame/packet. Thus, redundant data transmission can be minimized. Although it is beneficial
in terms of energy consumption, this might reduce the accuracy. For example, a single erroneous data
can add a biased to the resultant average value when AVG is employed as the information fusion
function. Furthermore, MAX and MIN choose only extreme values in information fusion process and
do not combine different information to reduce the noise level. Thus, there is a high possibility to vary
the fused information from the true value at intermediate devices. It can lead to huge failures in power
delivery and stability of SGs due to the unreliable information.

In centralized/parallel estimation, the fusion estimate is produced at a single fusion center
where all the sensor nodes transmit their local observations. The major drawback of this aggregation
mechanism is that network lifetime is shorter than decentralized approach, as the distant nodes
consuming larger amount of energy for direct transmission to the fusion center [22]. An improved
version of AVG known as support degree fusion had been used as one of the data fusion techniques for
centralized estimation. In this algorithm, the support degree is the amount by which the measurements
by each sensor are close to each other. At the fusion center, measurements from each sensor are
weighted by the support degree to obtain the estimate using the power average operator without the
awareness of any probability distribution [31–33].

Decentralized estimation under distributed detection has been a research area over the last
few decades. Linear state estimation fusion techniques such as Maximum Likelihood Estimate,
Linear Minimal Variance Estimate, and Best Linear Unbiased Estimate (BLUE) had been invented in
1990s [34–38]. These fusion techniques use local estimates and covariance between local estimates
to compute a global estimate. More recent trend is to use Kalman Filtering. During the first decade
of the 21st century, consensus-based Kalman filter fusion techniques have been proposed [39–42].
Consensus refers to the general agreement among the sensors. In the preceding algorithm,
sensors exchange local information or state estimates among the neighbors during each observation
period to reach a consensus on the global estimate known as Consensus Estimation. In between
consensus estimates, information is broadcasted to neighbors and fused where state estimates and
error covariances are updated. Therefore, broadcasting with neighbors takes place iteratively in
between consensus estimations, this algorithm will consume more energy and is less suitable to
SG environments.

Diffusion strategies had been developing since early 2010s, which show faster convergence and
lower mean square error than consensus strategies [43]. Diffusion strategies shown in [44,45] include
standard Kalman filtering update, diffusion update step, and a time update step. At every time instant,
a given node will broadcast local observations for Kalman filter update and intermediate estimate for
diffusion update. During the diffusion update step, a diffusion matrix is incorporated which has a
direct influence on the performance. One realization of diffusion matrix is by Covariance Intersection
(CI) method using the information of error covariance [45,46].

1.3. Diffusion Kalman Filtering for Comparison with Proposed Method

In this paper, we analyze the performance of the information fusion method proposed in
our previous work [11] under various criteria, further proposing it to be compatible for SGs that
can improve the information accuracy and reduce the energy consumption. We incorporate the
statistical properties of three major error sources that occur in IoT platform: measurement noise,
quantization noise, and transmission noise to the information fusion function. With the proposed
statistical information fusion approach, our main intention is to achieve the maximum improvement
in information accuracy with a single information transmission in each hop. Therefore, we can
save the excessive resource consumptions in conventional approaches that are used to improve
the information accuracy Even though similar approach is found in [47], it lacks a performance
analysis considering the channel bit errors. As it was analyzed in the motivation section, SGs favor
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high bit error rates. Therefore, the accuracy of the proposed method under high bit errors must be
considered. We evaluate the performance of the proposed method in chain and tree network structures
comparing its performance with conventional Average fusion and very recently proposed diffusion
Kalman Filtering given in [48]. This mechanism is well suitable for comparison since it also does not
exchange raw measurements with neighbors like the proposed method. Work presented in [46,48]
has been proved to be simpler and accurate than [45] as the former algorithms do not exchange raw
measurements. They are also proven to be energy and bandwidth efficient than exchanging raw
measurements. Instead of broadcasting observations, they have an individual update and local update
of state. Algorithm 1 presented in [46] has been proved to be more accurate than Estimated Based
Diffusion Kalman Filter (EBDKF) in [48], but at the expense of communication and computational
resources. EBDKF shows more accuracy and have less communication burden compared to Algorithm
2 given in [46] under low sampling periods. Therefore, we choose EBDKF along with conventional
Average method to compare with the proposed method for smart grids.

Improvements in both information accuracy and network lifetime of the proposed statistical
approach are shown through extensive simulations in bit level and numerical level. The computational
complexity of the proposed statistical approach is also investigated comparing with preceding two
fusion functions. We also derive analytical upper bounds for variances of the final fused information.

1.4. Organization of the Paper

The rest of the chapter is organized as follows. Section 2 presents the Materials and Methods.
In-depth analysis of the statistical data fusion approach in chain and tree routing structures as well
as bidirectional graph networks are discussed. In Section 3, both analytical and simulation results
are presented. The data accuracy, computational complexity and energy consumption are evaluated.
Finally, we conclude this paper in Section 4.

2. Materials and Methods

2.1. Problem Formulation

Consider an IoT platform with K distributed nodes. These nodes are end devices of the IoT
platform. Each node k has a measurement sk of a deterministic parameter θ given by Equation (1):

sk = θ + nk (1)

where nk is the measurement noise with zero mean and variance of σ2
sk. If the node k does not have

any child node, it quantizes sk into a discrete value xk. Otherwise, it combines all the received data
from its child nodes and sk together and obtains the quantized discrete output xk. Here, we assume that
sk is bounded by [−W; W]. The probabilistic scheme in [49] is used to obtain the xk with quantization
resolution Lk. xk is then transmitted to the sensor kth parent node. When the quantized output xk
propagates through a wireless channel, the signal is attenuated and contaminated by channel noise.
The received signal at the parent node can be given by Equation (2) from our previous work in [11] as

rk = (1− 2pk)(θ + nk + wk) + γk (2)

where wk is the quantization noise and the mean of the quantization noise is equal to zeros and
its variance is upper bounded by δk

2, which is equivalent to W2/(2Lk − 1)2. γk has zero mean and
variance εk

2 = (4W2(2Lk + 1)pk)/(3(2Lk − 1)). The bit error probability between the node k and its
parent is denoted by pk.
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2.2. Statistical Information Fusion Function

Let k be a node that fuse information where k = 1, 2, . . . , K The set that consists of all child nodes
is denoted by Nk with size ek. The received information from child nodes are given as ri where ri, iεNk.
The information fusion at node k can be expressed using Equation (3) as

θ̂k = f (sk, r1, r2, . . . , ri; . . . , rek ) (3)

where f (.) is the information fusion function that combines the received information. In smart grid
environments, three major types of errors: transmission errors, quantization errors, and measurement
errors usually exist in the received information. Statistical estimation can be applied to the information
fusion functions and exploit the power of statistics of error sources to obtain accurate information
fusion results.

2.3. Accuracy Measurement Metric

Information accuracy is a fundamental requirement in any information fusion approach. Square of
the difference between the estimated value at the node k and the true value is averaged for the total number
of fusion estimates produced by the node k [44]. That is, for the estimated value θ̂K, true value θ and
number of fusion estimates nk, the Mean Square Error (MSE) of node k is defined using Equation (4) as

MSEk = (|θ̂k − θ|2)/nk (4)

Network MSE (MSEnetwork) is obtained by averaging MSEk for all nodes in the network.
MSEnetwork is a numerical level performance metric that gives an overall insight of the information
accuracy. The error sources have different levels of impacts on different bits in an information
frame/packet.

MSE is a generic accuracy measurement metric that does not depend on the actual value of the
measurement parameter. However, the reliability specifications for smart grid applications intended in
this context specify that the Percentage Absolute Relative Error (PARE) of the estimate must be upper
bounded by 1% [50]. PARE can be calculated using Equation (5).

PARE = (|θ̂k − θ| ∗ 100)/θ (5)

We do not use percentage absolute relative error since it is a relative parameter depending on
the value of the estimate such that the error percentage of the results, which are obtained will be
depending on the actual value of the measurement as evident from Equation (5). To keep our results
generic, we use sink node’s MSE and network MSE instead of absolute percentage error. Therefore,
we assume that the all MSE values obtained in this context corresponds to absolute percentage error
less than 1 % meeting reliability requirements of SG applications targeted in this context.

Average error probability at each bit index is a good performance metric to obtain detail bit level
accuracy information at the sink node.

2.4. Computational Complexity Measurement Metric

Computational complexity of information fusion function is an important measure that determines
the feasibility of the function in practice. Ultralow power microprocessors are commonly used in
IoT end nodes and they have low computational capabilities. The eight-bit Almega1281 is one of the
popular microprocessors used in many nodes such as IRIS, MicaZ and Mica2. These microprocessors
support multiple clock frequencies. The number of CPU cycles to execute the information fusion
function is a measurable parameter. Thus, we use the time taken to execute the information fusion
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function (TA) as the performance metric to measure the computational complexity. It is expressed by
Equation (6) as

TA =
Number o f CPU Cycles

Clock Frequency
(6)

Note that the impact of TA on energy consumption cannot be simply neglected.

2.5. Energy Consumption Model

An analytical model given in [51] is used to measure the total energy consumption in data
fusion. This model includes details such as consumed energy by frame/packet retransmissions,
acknowledgments, frame/packet length, and transceiver processing units. In addition, we include
the energy consumption of microprocessor for data fusion as it is an important parameter in low
power devices.

The number of transmission attempts of a node can be given by a random variable
Xε{1, 2, . . . , N} where N is the maximum number of transmissions including the first transmission.
Similarly, the number of acknowledgments can be denoted with a random variable Yε{1, 2, . . . , N}.
The transmitter receives 0 acknowledgment if all transmission or acknowledgment attempts fail.
The total energy consumption of the transmitter to deliver a frame/packet is given by Equation (7) as

ETX = X(Pc + Pt/η)(Ld/Rd) + Y(PrLa/Ra) (7)

Pt, Pr, Pc, and η denote the transmit power, receiving power, circuit power, and efficiency
of the power amplifier, respectively. The transmission rate of information and acknowledgment
frames/packets are defined by Rd and Ra. Lengths of information and acknowledgment
frames/packets are given by Ld and La respectively. Similarly, we can compute the total energy
using Equation (8) to receive an information frame/packet as

ERX = X(PrLd/Rd) + Y(Pc + Pt/η)La/Ra (8)

The energy consumption for the information fusion is measured by Equation (9) as

EA = TA ∗ ICPU ∗VCPU (9)

where ICPU and VCPU denote the current and voltage consumption of the microprocessor respectively.
Thus, the total energy consumption of a single link is given by Equation (10) as

Elink = ETX + ERX + EA (10)

As there are K − 1 links in a gathering process that consists of K nodes, the total energy
consumption of the network can be given by Equation (11) as

ETotal =
K−1

∑
i=1

Elink,i (11)

In this paper, we use the network lifetime as the performance metric. It is defined as the maximum
number of data collecting cycles in a network until all nodes in the network are alive.

2.6. Estimation Based Diffusion Kalman Filtering (EBDKF)

The general multidimensional state space model given in [48] is employed in this context to
compare with the proposed method. The model basically consists of four update equations, which
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are updated in each node of the network at each iteration step. The first estimate is known as the
individual estimate at ith iteration step x̂ind

k,i|i given by Equations (12) and (13) as,

( p̂ind
k,i|i)

−1 = ( p̂ind
k,i|i−1)

−1 + Hk,i
T Rk,i

−1Hk,i (12)

( p̂ind
k,i|i)

−1 x̂ind
k,i|i = ( p̂ind

k,i|i−1)
−1 x̂ind

k,i|i−1 + Hk,i
T Rk,i

−1zk,i (13)

where Hk,i is the individual observation matrix, P̂ind
k,i|i is a calculated covariance matrix, and Rk,i is the

sensor noise covariance matrix. These individual estimates are then distributed to neighbors and a
local estimatex̂loc

k,i|i is calculated based on individual estimates received from the neighbors as given in
Equations (14) and (15).

( p̂loc
k,i|i)

−1 = ∑
lεNk

( p̂ind
l,i|i−1)

−1 (14)

(x̂loc
k,i|i) = ( p̂loc

k,i|i) ∑
lεNk

( p̂ind
l,i|i−1)

−1(x̂ind
l,i|i) (15)

where ( p̂loc
k,i|i) is the local covariance matrix calculated based on received individual covariance from

neighbors. (x̂loc
k,i|i) is the local estimate of the neighbors and sensor node itself individual estimates.

These local estimates are broadcasted to neighbors and diffusion update occurs at each of the sensor
nodes once the local estimate broadcasted from each of the neighbors are receive as shown in
Equation (16).

(x̂di f
k,i|i) = ∑

lεNk

cl,k(x̂loc
l,i|i−1) (16)

where (x̂di f
k,i|i) is the diffusion estimate and Cl,k is the diffusion matrix which is determined based on

the relative degree rule in Equation (17).

cl,k =
nl

∑
sεNk

ns
(17)

The degree of a node is total number of neighbors and node itself. Finally, time update is done
based on Equations (18) and (19).

(x̂ind
k,i+1|i) = Fi(x̂di f

k,i|i) (18)

( p̂ind
k,i+1|i) = Fi((b−1

k,k )(ploc
k,i|i))Fi

T + Gi((b−1
k,k )(Qi))Gi

T (19)

In this time update step, individual estimates to be used in the individual update step of next
iteration are calculated. In Equations (18) and (19), Fi and Gi are coefficient matrices associated with
system state and process noise, respectively. b−1

k,k is the degree of the kth node.

2.7. Network Latency

The propagation delay of a link (tpr), frame/packet transmission/reception delay of a link (ttr),
average waiting time in queue per link for one way (tqu), fusion time (t f u), Maximum Link length
out of links connected to neighbor nodes (li), data rate (R), frame/packet size (P), number of Hops
(N) of the longest path of the network and Average number of retransmission attempts (K), and
career propagation speed (c) are the main determinants of Network Latency of WSNs. Using these
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parameters, the network latency (TL) for a hierarchical network employing proposed method and
AVG can be given as shown in Equation (20).

TL =((2 ∗ (N − 1)(K + 1)) ∗ (tpr + ttr + tqu)) + ((N − 1) ∗ (t f u))

=(N − 1) ∗ (((2(K + 1)) ∗ (tpr + ttr + tqu)) + (t f u))

=(N − 1) ∗ (((2(K + 1)) ∗ ( li
c
+

P
R
+ tqu)) + (t f u))

(20)

Network latency is calculated for the longest path in the WSN for AVG and proposed
methods. Equation (20) considers both data and acknowledgment frame/packet transmissions.
The frame/packet has to travel from hop to hop for networks employing proposed method and
AVG. However, for networks employing EBDKF, the frames/packets are only exchanged among
neighbors such that the corresponding latency Equation is as shown in Equation (21).

TL =((6 ∗ 2 ∗ (K + 1)) ∗ (tpr + ttr + tqu)) + (t f u)

=((6 ∗ 2 ∗ (K + 1)) ∗ ( li
c
+

P
R
+ tqu)) + (t f u) (21)

The network latency is independent of N for diffusion techniques as proved by Equation (21).
For bidirectional Ad-Hoc networks the proposed method and average methods will also have to fuse
only information from neighbors as described in Section 2.10. Therefore, the network latency of such
networks employing AVG method or proposed method can be given as in Equation (22).

TLchain =((1 ∗ 2 ∗ (K + 1)) ∗ (tpr + ttr + tqu)) + (t f u)

=((1 ∗ 2 ∗ (K + 1)) ∗ ( li
c
+

P
R
+ tqu)) + (t f u) (22)

2.8. Information Fusion in Chain-Based IOT Platform using Proposed Method

2.8.1. Background

We first consider a chain-based information fusion technique where all nodes are organized into
a linear chain. Each node fuses its own measurement and received information from the nearest
neighbor as shown in Figure 1.

Figure 1. Chain-based network topology.

The resultant information is then quantized and transmitted to the nearest neighbor in
downstream. The information fusion process continues, until the sink node receives the information.
We assume that nodes are placed in equal distances. Consider the kth node in the chain, it has only one
child and that child node is represented by k− 1. The linearly scaled received information from the
child node is denoted by r

′
k−1, which is given using Equation (23),

r
′
k−1 = (θ + nk−1 + wk−1) + γk−1/(1− 2pk−1) (23)
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Here, wk−1 is the quantization noise and the mean of the quantization noise is equal to zeros and
its variance is upper bounded by δ2

k−1, which is equivalent to W2/(2Lk−1 − 1)2. γk−1 has zero mean
and variance ε2

k−1 = (4W2(2Lk−1 + 1)pk−1)/3(2Lk−1 − 1). The kth node in the chain fuse γ
′
k−1 and its

own measurement sk together. As the mean and the approximated variances of the γ
′
k−1 and sk are

available, the weighting property of the BLUE estimation [52] can be used to fuse the data to provide
the fusion estimate given by Equation (24) as,

θ̂ = (1/σ2
r′k−1

+ 1/σ2
sk
)
−1

(r
′
k−1/σ2

r′k−1
+ sk/σ2

sk
) (24)

σ2
r′k−1

is the approximated variance of the r
′
k−1. The variance of the quantized message at kth node

is obtained using the inequality Equation (25) as,

σ2
θ̂k
≤ δ2

k + (1/σ2
r′k−1

+ 1/σ2
sk
)
−1

(25)

Inequality Equation (25) can be further simplified to Equation (26) and the details are given in
Appendix A (k = 2 scenario).

σ2
θ̂k
≤ δ2

k + (σ2
r′k−1

/4) + (σ2
sk

/4) (26)

Equation (26) can be further expanded using a similar approach in [53] as given in inequality
Equation (27).

σ2
θ̂k
≤ (1/4)k−1σ2

s1
+

k

∑
j=2

(1/4)k−j+1σ2
sj

+
k

∑
j=1

(1/4)k−jδ2
j +

k−1

∑
j=1

(1/4)k−j(ε2
j /(1− 2pj)

2)

(27)

Equation (27) is an analytical upper bound for the variance of the quantized resultant information
at any sensor node k in the chain. Substituting k by K, an analytical expression for variance at the sink
node can be obtained.

Only the knowledge of the mean and the approximated variances of the γ
′
k−1 and sk is required

for this fusion technique. The knowledge on Probability Density Functions (PDFs), which was used to
obtain such noise variances, is not required in generating the fusion function. For instance, the output
of the fusion function for same mean and variance of γ

′
k−1 and sk which can be generated using any

distribution such as Gaussian, Normal, Poisson, Chi-Square, etc. will have the same fusion result.
Therefore, the proposed method does not require knowledge on PDF for information fusion.

2.8.2. Method of Performance Evaluation

We conduct a series of simulations using OMNeT++ 5.1 academic edition software platform to
evaluate the performance of the proposed statistical information fusion approach comparing the testing
parameter with results of AVG fusion and Estimation Based Diffusion Kalman Filter method of fusion.
Both fusion accuracy and network life time are considered. OMNeT++ is an open source object-oriented
modular discrete event network simulation framework having a generic architecture [54]. In [55], the
authors compared the performance of OMNeT++ and Network Simulator 2(NS2), and concluded that
OMNeT++ performs better than NS2 for large WSN. As our simulations also contain sensor nodes
containing 20 to 240 nodes, we selected OMNeT++ for simulations. As it is impractical to simulate
all three algorithms of data fusion at the same time, they were simulated separately in OMNeT++
environment and some final results of three fusion techniques were exported separately to MATLAB
environment for graphical analysis, while some were integrated in the OMNeT++ environment
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appropriately. A stationary, time invariant chain-based network topology is generated by deploying
nodes in equal distances. We assume that MICA2 wireless sensor nodes are used in the network as
IoT end devices. The BER of each link is determined based on the analytical model given in [56]. We
set the transmission power Pt = 0 dBm, reference distance d0 = 1 m, power loss at reference distance
PL(d0) = 55 dBm, the noise floor P(n) = −115 dBm and the parameters for path loss exponent (n),
and shadowing effects (σ) in Equation (29)) are set to 3.3 and 4. The modulation scheme selected
for wireless communication was Non-Coherent Frequency Shift Keying so that BER(Pe) is given by
Equation (28) [56].

Pe =
exp

−γ(d)
2

2
(28)

where γ(d) is the signal to noise ratio at distance d from the source which is given in dB by
Equation (29) as,

γ(d)indB = Pt − (PL(d0)− 10 ∗ n ∗ log10
d
d0

+ Xσ)− Pn (29)

All other parameters are as specified in [56]. Unless otherwise specified, the Lk is set to 8.
Heterogeneous measurement noise variances are considered and they are generated for all fusion
techniques as given in Equation (30) subjected to an upper bound for fair comparison of three different
fusion techniques.

σ2
sk
= Rk,i = b0 + a0

2χ2(1) (30)

Here, χ2(1) is the chi squared distribution with degree of freedom 1, b0 represents the network
wide noise variance threshold, and a0 gives the underlying variation from the nominal minimum.
Noise variance is calculated in this manner to create heterogeneous sensing conditions between
sensors of the same network and to create heterogeneous network conditions among initializations.
This variance is calculated at the initialization of the network for each node and will be a constant
there after. Gaussian distribution is used to generate instantaneous noise (nk) of a particular sensor
node. This noise is added to the actual parameter to get the sensor measurement as shown in
Equation (1). The Gaussian distribution’s mean is set to zero and variance is set to the value generated
at the network initialization using Equation (30) for a particular sensor node. Note that different
sensor nodes of the same network will have different noise variances as they are generated from
Chi-Square distribution as it was shown in Equation (30). For a particular sensor of a given network,
the variance generated using Equation (30) is a constant. That means each time a particular sensor
node takes a measurement; the noise is generated using the same Gaussian distribution. However,
when a network is initialized again, Equation (30) will make sure that a particular sensor will get a
different value for variance making the PDF of sensor measurements different. Noise variance is upper
bounded to 0.7 and sensor measurements are lower and upper bounded by −10 and 10 respectively.
As measurements are bounded by [−10, 10], we bound the quantized value of a fused output by
previous range. Any fused result higher than 10 is set to 10 and a fused result lesser than −10 is set to
−10. We assume that the network measures a deterministic parameter θ, which is equal to 1.8 and
bounded by [−10, 10] (i.e., W2 = 100). This upper and lower bounding is very practical. Consider a
sensor network measuring the frequency of a transmission line having an expected value of 50 Hz.
Here, the measurements can be lower and upper bounded by 45 Hz and 55 Hz, respectively, similar to
what we have done in these experiments which is very practical.

For fair comparison of the proposed method with EBDKF in [48] we consider the general
multi-dimensional state-space model given in [44,48] as shown in Equations (31) and (32).

xi = Fi−1xi−1 + Gi−1wi−1 (31)

zk,i = Hk,ixi + vk,i (32)
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As only one parameter is estimated in our context, the coefficient matrices H, G, and F in
Equations (31) and (32) reduce to one dimension. Even though the process noise (Q) is set to 4
in [44], we select the state noise (wi−1) as zero which will result zero process noise variance (Qi).
This is because the addition of a process noise even worsens the BER performance of EBDKF for
update equations in [48]. In particular, we chose the best-case performance wise scenario for EBDKF
to compare with the proposed method which exists when there is no process noise. Then, it will
be crystal clear that if a data fusion method outperforms the accuracy of EBDKF under its best
performance scenario, then the considered fusion method will outperform EBDKF under any other
scenario. Therefore, the value of G is not relevant for zero process noise scenario as it can be observed
from Equation (31); but we set it to zero. We set H = 1 because observations are not scaled by a factor
according to the way that we have modeled sensor observations for proposed method and Average as
it was shown in Equation (1). In order to have a fair comparison with AVG and proposed method,
the sensor observations of EBDKF are modeled in the same manner. That is the true parameter added
with Gaussian noise. Therefore, H = 1 for the state-space model. The sensor measurement noise
variances (Rk,i) are generated as given in Equation (30). x̂ind

k,0|−1 is modeled as a continuous uniform

random variable in range [−10:10], P̂ind
k,0|−1 = nk, where nk is the degree of the kth node. We first

evaluate the accuracy of estimating a slowly varying(deterministic) parameter for the considered
time interval and then later consider the accuracy of a dynamic parameter using the three different
fusion algorithms.

2.9. Information Fusion in Tree-Based IOT Platform Using Proposed Method

2.9.1. Background

Tree-based information fusion is the most generalized hierarchical information fusion scheme.
Figure 2 shows a typical binary tree-based hierarchical network.

Figure 2. Binary tree-based network topology using data gathering with information fusion
function f (..).

Although the given network looks simply, it is scalable with respect to the number of nodes.
Here, node I represents the sink node which is the root node of the tree. All the other nodes can
be either a source node or information fusion node. Nodes A, B, D, E, and F are leaf nodes of the
tree that only transmit local measurements to parent nodes in Average and proposed methods of
information fusion algorithms acting only as source nodes. The intermediate nodes C, G, and H fuse
incoming data from its child nodes with their own local measurements and forward the results to
their parent nodes. Therefore, these nodes work as source and information fusion nodes. Any parent
node can have multiple child nodes. Figure 2 is a simplified version intended for visual clarification
purposes. This kind of network connections can be seen towards the sink node I. Here, the information
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fusion directions are represented by arrows. In contrast in EBDKF fusion technique, all the nodes
aggregate data and sensor measurements due to inherent two-way communication present in diffusion
techniques. Therefore, for this technique there is no identifiable root node or leaf nodes unlike in
Average or proposed method fusion techniques.

Consider an information fusion node k in the tree that has ek number of child nodes. The weighting
property of BLUE estimation [52] can then be applied to obtain the fused data at node k depicted by
Equation (33) as

θ̂k = (∑
iεNk

(1/σ2
r′k−1

) + 1/σ2
sk
)
−1

(∑
iεNj

r
′
k−1/σ2

r′k−1
+ sk/σ2

sk
) (33)

variance of the quantized fused information at node k can be shown using inequality Equation (34) as

σ2
θ̂k
≤ δ2

k + (∑
iεNk

(1/σ2
r′k−1

) + 1/σ2
sk
)
−1

(34)

We can further approximate Equation (34) using a similar approach in [53] to obtain the inequality
in Equation (35) as

σ2
θ̂K
≤ δ2

K + 1/(1 + εK)
2 ∑

iεNK

σ2
rak−1

+ σ2
sK

/(1 + εK)
2 (35)

The proof is given in Appendix A. We can analytically compute an upper bound for the variance
of the fused information at the sink node by considering the three major error sources as shown in
inequality Equation (36).

σ2
k ≤

K

∑
k=1

(αkδ2
k ) + β (36)

Here, we assume αK = 1 where K is the sink node. We determine αi = αk(1/(1 + ek)
2) recursively

for all 1 ≤ k ≤ K and β is computed as given in Equation (37).

β =
K

∑
k=1

(αk(1/(1 + ek)
2))(σ2

sk
+ ε2/(1− 2pk)

2) (37)

Here iεNk.

2.9.2. Method of Performance Evaluation

The proposed statistical information fusion approach is tested on a tree network using OMNeT++
simulations. Simulation results were exported to MATLAB, as in the case of chain topology for
graphical analysis. In these simulations, we analyze the improvements in the data accuracy and the
network life of the proposed method compared to AVG and EBDKF data fusion methods. We consider
a 300 m × 300 m square region where sensor nodes are randomly deployed. Here, we use a protocol in
which the tree-based WSN is built by using the distance between the neighbors as the cost function
to ultimately join to the fusion center. That is a given node will connect to another node which has
the least distance with the given node. This protocol will maximize the inter-node communication
than Minimum Spanning Tree (MST) protocol which minimize the total distance between a given
node and the fusion center rather than minimizing inter-node distance. Therefore, this protocol will be
more reliable even though the total cost of transmission might be expensive than the MST protocol.
This protocol will enhance more child nodes to be connected to an aggregating node than the MST
protocol where the average number of child nodes per aggregating node is one. As our intention is to
study the accuracy, complexity, and network lifetime when aggregating nodes have more children,
i.e., effect of parallel data aggregation along with serial data aggregation, we use the previously said
minimum neighbor distance tree without using MST protocol. Therefore this network structure is
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a more practical and generalized structure due to random placement of sensor nodes and having
different inter-node distances than the previously discussed chain network. Here, the Euclidean
distance among sensor node is used as the cost function. The sink node is placed at the (150, 150)
coordinate which is the center of the square region. Unless otherwise specified, all the other parameters
of the network are similar to the parameters specified in the chain-based network simulations except
the link length and BER. In chain-based network, we assumed that the nodes are placed in equal
distances so that the BER s of all the wireless links are the same. However, in this tree structure
resembling a more practical sensor network used in SG environment, since a minimum neighbor
distance connection method was used, the link distance varies between different node pairs making
the BER of links different according to Equation (29).

2.10. Information Fusion in Randomly Placed Non-Hierarchical Bidirectional Graph Based IOT Platform Using
Proposed Method

2.10.1. Background

In a non-hierarchical sensor network, there is no fusion center due to inherent bidirectional
communication. In the preceding sections, we analyzed the performance of chain and tree networks
for proposed and average fusion which are hierarchical in structure for one directional communication.
We also applied the diffusion technique for chain and tree structures using bidirectional communication
which converts the unidirectional hierarchical structure into a graph without a fusion center.
Diffusion techniques have been originally proposed and tested for ad hoc-type networks which
do not have any fusion center in which the sensor nodes are not aware of the network structure as
seen in [43–46,48]. In those networks, a given sensor node is aware of the sensor nodes connected to it
known as neighbors. In previous sections, we compared unidirectional average and proposed fusion
techniques with the bidirectional diffusion technique for chain structures. In this section, we implement
proposed method and average method fusion techniques as bidirectional in order to be used in an
unstructured graph, in which the sensor nodes are randomly deployed and are able to communicate
with limited number of neighbors due to transmission capability. We employ the network given in
Figure 3.

Figure 3. Non-hierarchical Bidirectional network with 20 sensor Nodes.

2.10.2. Method of Performance Evaluation

The proposed statistical information fusion approach is tested on a Bidirectional graph using
constructed using OMNeT++ simulations. Here, the distance between the sensor nodes are fixed;
however, there is no protocol used in defining which sensor nodes will be neighbor node of a
particular node as seen in Figure 3. The network constructed can be considered as an instance
of an Ad-Hoc network.
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The information accuracy of the unstructured network in Figure 3 is tested by comparing the
network MSE for three different data fusion techniques. There is no modification to EBDKF algorithm
for unstructured graph. But, a modified approach for the proposed method and average data fusion
are employed here.

A data cycle of proposed method will consist of obtaining a sensor measurement(sk) at ith data
gathering cycle and broadcasting it to neighbors. Then, the received information broadcasted in this
manner is fused according to Equation (33). sk in this equation is the sensor’s own measurement at the
ith data gathering cycle. This broadcasting will be done only one time since the diffusion technique
also produce one diffusion estimate per data gathering cycle. In contrast, in consensus approaches,
the measurements are broadcasted n times per data gathering cycle until all the nodes reach global
estimate of mean of all sensor measurements [39–42,57]. Similar approach to proposed method is used
for the average fusion technique in which only the data fusion technique is different.

3. Results and Discussion

3.1. Simulations for Chain-Based Network

3.1.1. Simulations for Data Accuracy of a Deterministic Constant (Slowly Varying) Parameter Having
Bounded Sensor Noise and Measurements

In this section, we compare the MSEnetwork and the MSEsink node when the proposed statistical
information fusion method; the EBDKF and AVG method are employed in the presence of measurement
errors, quantization errors, and transmission errors. We run 600 iterations for a single run in order
to get enough steady state measurements while there are multiple number of runs for a simulation.
This algorithm is used to get x̂di f f

k,i|i and then as seen in Section 3 in [44]; it is used to obtain the estimate
of deterministic parameter θ, having an expectation of 1.8. One of the reasons for selecting 1.8 as the
system parameter for analysis is since it is close to zero such that sensor measurements will rarely
exceed sensor measurement limit. Also, it is not one of the quantized output values in the implemented
quantized scheme of 8 bits as the nearest quantized output values to it are 1.79688 and 1.875. Therefore,
even the highest accurate estimation of 1.80 will cause a quantization error of 0.00312 so that effect
of quantization error will be reflected on the generated results. In these simulations, we generate
different network conditions for different runs and in each network condition, data is gathered 600
times. The final results are obtained by averaging these simulation results. We first analyze the
impact of transmission errors. A network that consists of 50 nodes is considered and the BER of a
link is increased by reducing the distances between nodes. These values are varied between 10−6 and
0.05 by changing the distance between two consecutive nodes from 24.45 m to 41.5 m. We generate
heterogeneous measurement noise variances by setting b0 = 0.3 and a0 = 0.1 with variance upper
bounded by 0.7. Figure 4 compares the Network MSE and MSE at sink nodes of the proposed statistical
method, EBDKF, and AVG method.
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Figure 4. Performance comparison among the proposed statistical, EBDKF, and AVG information
fusion methods in a chain-based IoT platform for different BER.

We can observe that the proposed statistical method outperforms AVG method for the considered
BER range. The performance gap increases significantly with the BER. The proposed method also
outperforms the EBDKF when the BER, due to communication errors, is greater than 0.015. For very
low BER values (<10−5), the accuracy of proposed method is slightly higher than Diffusion Kalman
Filtering. It can be observed from Figure 4 that for higher BER (>0.01), the EBDKF algorithm’s network
mean square error increases with a rising gradient. That is due to the fact that EBDKF heavily relies on
multiple transmissions among neighbors for a single diffusion estimate at an iteration step which can
get highly inaccurate under transmission errors. Due to that, as it is evident from Figure 4 EBDKF is
superior than the proposed method in terms of information accuracy for moderate bit error rates in
the range of 10−5 to 0.0115. However, EBDKF shows large MSE under high communication errors
which can occur in a Smart Grid environment. EBDKF’s accuracy degrades even below average
fusion method when BER is greater than 0.0175. However, on the other hand, the proposed method is
aware of the communication errors and adjust the weighting coefficient automatically which is σ2

r′k−1
in

Equation (24). When communication errors increase, σ2
r′k−1

also increases, so that it having a smaller

weight in the fusing equation. Due to this as evident from Figure 4, MSE in proposed method increase
with a very low gradient with BER.

As the proposed statistical method accurately models the received information, we are able to
eliminate any bias that can occur in the final result by dividing each received data with corresponding
(1− 2pk−1) coefficient. Furthermore, the use of the weighting property in the conventional BLUE
estimator helps to achieve the minimum variance for the received information. Thus, the proposed
statistical method is able to maintain the network mean square error less than 0.29 for the considered
BER range.

Diffusion techniques do not differentiate between the parent and child nodes; they identify
both child nodes and the parent as neighbors. For chain structure employing diffusion techniques,
the number of neighbors of the intermediate nodes is always equal to two, whereas the number of
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neighbors of the first and sink node is equal to one. The number of child nodes per network and the
sink node for a WSN employing the proposed statistical method and the AVG fusion techniques are
always equal to one. Therefore, the accuracy of the information fusion for network and the sink node
will be similar for networks employing AVG and the proposed method, as is evident from the results
obtained in Figure 4. When the number of nodes is high, so is the number of intermediate nodes.
Therefore, the average number of neighbors for a network employing EBDKF is equivalent to two.
But, the sink node will definitely have only one neighbor. The performance gap of EBDKF for network
MSE error and MSE of sink node observed in Figure 4 must be due to this difference in number of
neighbors of the sink node and the network. For low BER values, the network MSE has been lower
than sink node’s MSE. That is because an estimate produced by a diffusion technique becomes more
accurate when the number of neighbors is higher under low communication errors. However, the
higher number of neighbors will greatly reduce the accuracy under high communication errors for
diffusion techniques. That is why the sink having only one neighbor outperforms its network having
two neighbors for high BER values. However, still, we can observe that the proposed method’s sink
node’s MSE is lesser than MSE of sink node employing EBDKF for BERs higher than 0.025. However,
the accuracy of the sink node of EBDKF fusion technique is always lesser than accuracy of a sink node
with Average data fusion for all BER s.

To have a very good understanding about the network’s estimate of the system parameter under
different BER for different information fusion schemes, we plot the mean value of the estimate at each
node and the mean value of each node’s 95% confidence interval limits as illustrated in Figure 5.
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Figure 5. Network Mean estimate and 95% confidence interval limits for a true state of 1.80 compared
among the proposed statistical, EBDKF and AVG information fusion methods in a chain-based IoT
platform for different BER.
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When analyzing the results obtained in Figure 5, it can be seen that for low BER values, the
network mean estimate is very close to the system state of 1.8 for all fusion techniques. However,
the performance in terms of accuracy is different due to difference in the variance of the estimates of
different fusion techniques. This variance can be identified by looking at the size of the 95% confidence
interval in Figure 5. In very low BER conditions (<10−5), the 95% confidence interval is also narrow
and its width is in decreasing order for Average, EBDKF, and proposed method proving the previous
result obtained for network MSE for very low probability of communication errors. This is because
we can say that when the confidence interval for the results is higher, so is the network mean square
error. The mean estimate of the proposed method decreases slightly and remains very close to the real
value of 1.8 when BER increases outperforming the accuracy of mean estimate of other two fusion
techniques. However, the mean value tends to deviate more from real value of 1.8 when BER increases
for other two data fusion techniques where the AVG method having a moderate deviation and EBDKF
having the highest deviation. The reason for observing high network MSE for high BER for average
and EBDKF can be explained by looking at the increasing size of the 95% confidence interval for those
two methods as evident from Figure 5. In contrast, the proposed method’s confidence interval is only
slightly increased with increasing BER, so that it is showing least network MSE for high BER. Further,
the average method’s accuracy approaches that of proposed method when 0.001 < BER < 0.002 as
seen from the confidence interval and observable in Figure 4 as well.

We further analyze the impact of the transmission errors on each individual bit in a data
frame/packet. Figure 6 depicts how each individual bit in a data frame/packet experience two
different BER conditions. Here, we compare the mean value of bit wise accuracy of the quantized
output of fused result of each node with the quantized value of the system parameter. We set 100%
error if a bit is altered and 0% error if the particular bit of the quantized fused output is same as the
corresponding bit of the quantized value of system parameter. Here, we get the mean of the results for
particular bit considering all the nodes to obtain the network bit level performance for first five most
significant bits.



Sensors 2020, 20, 567 19 of 45

Figure 6. Bit level error performance comparison among the proposed statistical, EBDKF, and AVG
information fusion methods in a chain-based IoT platform for (a) BER of 0.005 and (b) BER of 0.05.

The significant bits can drastically change the final value from the true value. For example,
the impact of MSB is higher than the total combination of next four significant bits. When BER is
0.005, the average error probabilities of first five significant bits of EBDKF is lesser than both AVG
and proposed method. The percentage error of first two Significant bits for proposed and AVG
methods remain at very low values but higher than EBDKF. The decreasing order of magnitude of
percentage error in first two most significant bits are in the order of AVG, proposed method, and
EBDKF. Therefore, this proves why it is seen a high network MSE and high width of 95% confidence
interval in Figures 4 and 5, respectively, in decreasing order as AVG, proposed method and EBDKF
when BER is 0.005. However, when BER is 0.05, the preceding order changes to EBDKF, AVG, and
the proposed method proving that proposed method shows lower error probabilities for the first two
most significant bits compared to AVG and EBDKF as seen in Figure 6. When observing the size
of the confidence intervals at a BER of 0.05, only the proposed method’s interval is small as seen
in Figure 5. The size of the confidence interval is moderately large for Average and very large for
EBDKF. Same order is observed for first two MSB s for BER of 0.05 in Figure 6. Therefore, we can use
the proposed method to protect these most significant bits successfully under high communication
error environments. This explains why we observe a significant performance gap among the three
different fusion schemes at BER 0.05 in Figures 4 and 5. It can also be observed from Figure 6 that
the percentage error of both third and fourth significant bits of all considered fusion schemes have
increased when BER is 0.05 compared to BER of 0.005. However, the percentage error of first two
significant bits for proposed method is reduced by a very small amount and that for Average and EBDKF
have been significantly increased as the BER is increased.

Redundant node deployment can be used to improve the accuracy of fusion schemes. We simulate
the information fusion process in chain-based network by varying the number of nodes. Here, the
distance between the sink node and the furthest node is kept constant at 2500 m. Figure 7 shows the
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number of nodes required for AVG, EBDKF, and proposed statistical methods to maintain a given
network mean square error.
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Figure 7. The number of nodes required to achieve a given percentage error using the proposed
statistical method, average, and EBDKF data fusion for IoT platform.

It is evident from Figure 7 that when more sensor nodes are added, the network MSE of all the
aggregation schemes decrease. However, the rate of decrement of MSE depends on the aggregation
method. To achieve a very low MSE, for instance consider 0.06, as it is evident from Figure 7, we need
about 35 additional nodes for AVG and 31 additional nodes for the proposed method than EBDKF.
However, to achieve MSE of 0.228, the proposed method will require 10 additional nodes while AVG
will require around 21 more additional nodes than required by EBDKF method. When the MSE
requirement goes above 0.25, the proposed method outperforms both AVG and EBDKF. For instance,
to achieve MSE of 0.30, EBDKF will require 35 more nodes and AVG will require 42 more nodes than
the proposed method. These results verify the network MSE obtained in Figure 4. Therefore, using
less resources (nodes), the proposed method can achieve an MSE as low as 0.3 than other data fusion
techniques considered.

The data retransmission is another technique used to mitigate the impacts of transmission errors.
In particular, we analyze the network MSE vs. maximum number of additional retransmissions
allowed per hop per data frame/packet required for AVG, EBDKF, and the proposed statistical method,
as shown in Figure 8. Here, we consider an equally spaced 50 nodes in a chain-based network. The BER
of a link is equal to 0.05. Here we have made the assumption that communication channel errors are not
affecting on acknowledgment frames/packets so that an acknowledgment sent is always received. We
vary the maximum number of retransmission attempts for each hop per data frame/packet between 0
and 4.
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Figure 8. The performance comparison among the proposed statistical, AVG, and EBDKF information
fusion methods in a retransmission allowed chain IoT platform.

It is observed that the proposed method maintains the network MSE less than 0.3 under all
conditions having a very low gradient suggesting that its network MSE is very slightly decreased in a
retransmission allowed network. The data retransmission does not provide any additional benefit for
the proposed method to improve the accuracy. On the other hand, for AVG method, it is required to
set the maximum retransmission attempts to 3 to reduce the MSE less than 0.30. Further, the EBDKF
method shows a very high network MSE when no retransmissions are allowed having least accuracy
out of the three fusion methods. But it can improve drastically its network MSE to 0.29 getting almost
equal MSE performance to the proposed method and outperforming Average fusion when a maximum
of one retransmission is allowed as evident from Figure 8.

Even though retransmissions can reduce network MSE, excessive energy for both information
and acknowledgment retransmissions, representing excessive use of communication resources, are the
major drawbacks. Therefore, it is evident that the proposed method can outperform both AVG and
EBDKF at high BER value like 0.05, as it can achieve least network MSE with least usage of energy and
communication resources.

The usage of communication resource for frame/packet transmission in three schemes for
chain-based network can be generalized as follows. Assume that there are k number of nodes and
n is the number of information frames/packets that are transmitted within a single link per data
gathering cycle in a chain-based WSN in which retransmissions are not allowed. Also, let L be the
maximum number of retransmissions allowed for a node per information frame/packet. Depending
on the channel conditions, the maximum retransmission attempts might not be used in each link.
The number of retransmissions will depend on the BER(Pe). All nodes will transmit at least one time.
Then, when L = 1, the number of nodes retransmitting one time will directly depend on the value
of Pe. When L = 2, it can be assumed to be proportional to Pe

2 and so on and so forth. Therefore,
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total Transmissions (N) considering only information frame/packet (without acknowledgments)
transfer will be as shown in Equation (38),

N = (n) ∗ (k− 1) ∗ (1 + λ1Pe + λ2Pe
2 + . . . . . . + λL−1Pe

L−1 + λLPe
L) (38)

where λk is a constant. Using Equation (38), an upper bound on number of total transmissions can be
derived as depicted in Equation (39) for the cases when λkPe

k = 1.

N =(n) ∗ (k− 1) ∗ (1 + 1 + 1 . . . + 1 + 1)

=(n) ∗ (k− 1) ∗ (L + 1)
(39)

As proved in the preceding section, L = 0, 1, 3 in the proposed method, EBDKF, and Average
fusion methods, respectively, to achieve a network MSE less than 0.3. It is evident that n = 1 in
proposed method and average method as a node will send only one fused data frame/packet in a link.
As there are two ˆxind, ˆ(xind) ∗ ((pcurr

ind )−1), xloc for each link in EBDKF per data gathering cycle, n = 6.
Therefore, by substituting in Equation (39) for upper bound, Nproposed = (k− 1), NAVG = (4) ∗ (K− 1),
NEBDKF = (12) ∗ (K− 1). Therefore, when the network MSE is less than 0.3, total retransmissions
will be lesser than the upper bound. In order to obtain only retransmission upper bound, L + 1 in
Equation (38) will have to be replaced by L. When acknowledgment frames/packets are also considered,
the total transmissions will be even more than the values calculated in preceding sections.

Although, the information retransmissions have been shown as a solution to improve the accuracy
of the information fusion with AVG and EBDKF methods as it was stated in preceding section,
they consume additional energy which is a major disadvantage in WSN s. To get the exact number of
total retransmissions when BER is 0.05, Figure 9 was obtained to visualize the total retransmission
attempts for data frames/packets utilized in the network when the maximum retransmission attempts
are limited to one, two, three, and four among EBDKF and AVERAGE fusion techniques. We do not
observe the total retransmissions of proposed method, as we came to conclusion that frame/packet
retransmissions very slightly improve the accuracy of the estimate generated by proposed method.

It can be clearly observed from Figure 9 that all values are within the upper bound for
retransmission of 157 and 294 for AVG and EBDKF when L = 3 and L = 1, respectively. As observed
in Figure 9, approximately total of 24 retransmission attempts are used in AVG method and 93 in
EBDKF to achieve a network MSE less than 0.3. These additional retransmissions consume excessive
energy for information retransmissions. Therefore proposed method can effectively save transmission
energy compared to other fusion algorithms.
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Figure 9. The total retransmission attempts used by AVG and EBDKF fusion methods in a
retransmission allowed chain IoT platform.

3.1.2. Simulations for Data Accuracy of a Deterministic Dynamic Parameter Having Bounded
Sensor Noise

The actual value of the system parameter measured by sensor nodes is not a constant value all the
time; it can vary over time. For example, when sensor nodes are used to monitor the transmission lines
in a smart grid environment [3,4], voltage or frequency fluctuations can occur. Therefore, it is necessary
to evaluate the performance of the proposed method for dynamic states to check whether the estimates
can track the varying parameter. Here, we simulate the system parameter having a mean of 1.80 and
having intermittent sinusoidal fluctuation representing the dynamic nature. All other values set for
simulation are same as for deterministic parameter case. Here, we record the mean value of estimates
of 50 sensors as a vector in OMNeT++ for 600 data gathering cycles. The dynamic parameter was
modeled as a discrete sinusoidal parameter given by sin(k/20) where k is the sensor network’s kth
time step of measurement or in other words kth data gathering cycle. We track how the three different
fusion schemes are able to track the varying parameter under different communication error rates as
shown in Figure 10.

As it can be observed from results in Figure 10, all considered fusion methods follow the sinusoidal
variation as the real system state for under low communication errors. That means for BER of 0.0001,
there is less difference between the network mean estimates of different fusion techniques as mean
estimates almost overlap on each other.

However, when BER is 0.05, it can be observed a deviation among the mean estimates three
different fusion techniques. EBDKF and AVG fusion methods seem to have a higher deviation from the
actual system state than the estimates from the proposed method. To prove the preceding argument,
we calculated the network MSE for two different BER values for three fusion techniques as shown in
Table 1.
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Figure 10. The performance comparison among the proposed statistical, AVG and EBDKF for a
dynamic system parameter having communication link with (a) BER of 0.0001 and (b) BER of 0.05.

Table 1. Network MSE for a dynamic system parameter for different fusion functions under
different BER.

Fusion Function MSE for BER = 0.00001 MSE for BER = 0.05

EBDKF 0.0428 266.5
AVG 0.1162 2.0107

Proposed method 0.0702 0.3019

As it is evident from the results summarized in Table 1, network MSE performance for dynamic
parameter is such that EBDKF has highest accuracy for low BER and vice versa. Average method has
least accuracy under low BER and moderate accuracy under high BER. The proposed method has
moderate accuracy under low BER and highest accuracy under high BER. Therefore, the performance
of the three considered fusion techniques in terms of accuracy for dynamic system parameter is similar
to that of deterministic parameter. Therefore, the argument that proposed method outperforms both
AVG and EBDKF under high communication errors can be derived for dynamic system parameter
situation also. The reason for overlapping of estimates when BER of 0.0001 and the deviation when BER
of 0.05 which was observed in Figure 10 can be explained using network MSE values summarized in
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Table 1. The MSE values of the three fusion techniques are very low and there is less difference between
them when BER is 0.0001 and vice versa when BER is 0.05 is the reason for preceding observation.

3.1.3. Evaluation of Complexity of Information Fusion

In chain-based WSNs, each node has only one child for AVG and proposed method. Thus, each
node needs to combine only two data frames/packets during the fusion process for AVG and proposed
methods. For EBDKF fusion technique, the average number of neighbors is two such that there will be
3 data frames/packets to combine in a single time for a node. Further, there are 3 batches of such data
frames/packets per data gathering cycle. Therefore, the complexity is high in EBDKF. The number of
CPU cycles of the microprocessor and the corresponding complexity TA for each fusion function is
given in Table 2. We use Atmel Studio 7 to evaluate the complexity of the fusion function.

Table 2. CPU Overhead of Different Information Fusion Functions for chain-based Network.

Fusion Function CPU Cycles Time ((TA)(µs))

Average 36 2.25
Proposed Method 128 8

EBDKF 252 15.75

Single precision 32-bit floating-point data types are used in AVG, EBDKF and the proposed
information fusion functions. The complexities of these functions are therefore high compared to
simple information fusion functions such as OR and AND. The average method fusion function
will require only two additions and one division. In the proposed statistical information fusion two
additions, five divisions, and one multiplication are used. It was discussed in a previous section that
the average number of neighbors for diffusion technique in a chain-based platform as two. For a
single diffusion estimate, the Estimation based Diffusion Kalman Filtering will require 10 additions,
4 divisions and 8 multiplications. Thus, the EBDKF fusion function has a much higher computation
complexity than the proposed method and AVG method as proved by results in Table 2. It can be
identified that the complexity of diffusion technique has been 7 times complexity of average method
whereas the proposed method’s complexity is only 1.97 times that of Average method for chain-based
sensor networks.

3.1.4. Network Lifetime

The transmission energy, receiving energy, and circuit energy are the main determinants which
differentiate network life of WSN s. In this section, we compare the network life time of a chain-based
networks that separately uses AVG, EBDKF, and proposed statistical information fusion methods.
A chain-based network with 50 nodes is considered for the simulation and they are spaced in
equal distances. Previously in this paper, we proved that at BER of 0.05, when considering the
accuracy of deterministic system parameter, AVG and EBDKF fusion techniques will require maximum
retransmissions per hop per information frame/packet to be set to 4 and 1, respectively. Therefore,
here we consider the network lifetime for such a situation in order to achieve an MSE less than
0.30. In that section, we neglected the communication burden due to sending of acknowledgment
frames/packets. However, here we consider the energy loss due to acknowledgment frames/packets
in a retransmission allowed network. Here, b0 and a0 are set to 0.3 and 0.1, respectively. We randomly
assign values between 10 mJ to 50 mJ as initial energy levels for sensor nodes using a uniform
distribution. We use Equation (10) to compute the energy consumption of each link. In Equation (10),
we substitute Rd = Ra = 19.2 kbps, Pt = 200 mJ, Pc = Pr = 100 mJ and Ld = La = 8.
Since Total transmissions = (Total Retransmissions + 1) maximum values for X and Y are set to 4, 2,
and 1 for AVG, EBDKF, and proposed fusion methods, respectively. Further Voltage(V) and Current(I)
values of the Central Processing Unit of wireless sensors are set to 5 V and 20 mA respectively to
calculate the energy consumption due to computations using the fusion time values given in Table 2.
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We run extensive simulations and record number of total active nodes at each time step for 100 data
gathering cycles and replicate for 50 times to obtain Figure 11, which depicts how the average total
active nodes of the network change with time for 3 different fusion techniques.

Figure 11. Network lifetime comparison with the proposed statistical, EBDKF and AVG information
fusion methods when BER = 0.05 in a chain-based IoT platform.

We can see the improvement in the network life time when we employ the proposed statistical
method by observing the results in Figure 11. When the proposed statistical method is employed,
59 data gathering cycles are possible prior to losing the first node in the network. But, in AVG
method and EBDKF, the first node is died after 21 and four data gathering cycles, respectively. This
experimental result also proves the mathematical derivation of total information transmission load
comparison for three fusion techniques. There we mentioned that the information transmission of
AVG and EBDKF as 3 and 9 times than proposed method for achieving network MSE less than
0.3. Further, we can observe that by 59 data gathering cycles, proposed method has lost none of
its nodes, network with Average fusion had lost 28% of nodes and EBDKF has lost all of its nodes.
When observing Table 2, it is very clear that highest computational efficiency belongs to Average
method. However, as the proposed method does not send any retransmissions and acknowledgments,
its overall energy efficiency is considerably higher than two other fusion techniques considered even
though its computational complexity is moderate. The reason for EBDKF for producing least network
lifetime is due to its very high computational complexity and very high number of retransmissions
compared to other two fusion techniques. Therefore, the proposed method stands tall in terms of
network lifetime so it is highly suitable to be used in wireless sensor networks used in smart grid
environments having energy constraints.

3.1.5. Network Latency

Using Equations (20) and (21), network latency of chain-based networks that separately uses AVG,
EBDKF, and proposed statistical information fusion methods can be calculated. It can be assumed that
for networks with proposed method and AVG that tqu = 0 as there is always only one frame/packet
waiting to be served. However, in EBDKF, there can be multiple frames/packets waiting to be served
so that frame/packet waiting time has to be considered and we assume tqu = 0.1 ms We substitute
R = 20 kbps for Zig Bee, R = 384 kbps for WCDMA, li = 50 m for Zig Bee, li = 5000 m for WCDMA,
c = 3× 108 ms−1 and P = 20 bytes for Zig Bee (1 byte payload, 19 bytes for data link layer header
and trailer), P = 41 bytes for WCDMA (1 byte for payload, 40 bytes for TCP/IP header). K is set to 3,
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1 and 0 for AVG, EBDKF and proposed fusion methods respectively to achieve similar MSE values
(close to 0.3). Fusion times (t f u) are obtained from Table 2. Table 3 summarizes the network latency
values calculated in this manner.

Table 3. Network Latency of different information fusion functions for chain-based network.

Fusion Function Latency for Zig Bee (ms) Latency for WCDMA (ms)

Average 32.004(N−1) 6.97(N−1)
Proposed Method 8.008(N−1) 1.74(N−1)

EBDKF 98.42 23.316

As proved by the results in Table 3, when the proposed statistical method or AVG method is
employed, the network latency is low when N low. However, on the other hand, EBDKF maintains a
constant network latency independent of N. It can be shown that using results in Table 3 that AVG
method and proposed method exceed the latency of EBDKF when N is greater than or equal to 5 and
14, respectively. Further, we can observe that the network latency of Average method is always almost
4 times that of that of proposed method in order to achieve similar accuracy.

When obtaining the results in Table 2, we assumed that inter-node link length is constant. As the
proposed method is targeted to be employed in HANs and FANs, we expect the total length of the
chain to be less than 500 m and 500 km for HANs and FANs, respectively. Therefore, the value of N
will be restricted to 11 nodes and 101 nodes respectively for HANs and FANs as li is 50 m and 5 km for
Zig Bee used in HAN and WCDMA used in FAN. Therefore, the proposed method will have the lowest
latency in a HAN so it is highly suitable to be used in a HAN compared to other two fusion methods
standing tall in terms of network latency. For a HAN, EBDKF will have the highest latency when N is
less than 5. When N is greater than 5, the AVG method will have the highest latency for a HAN using
Zig Bee. When considering about FANs, the proposed method will maintain its dominance in terms of
lowest latency until N is 14; but, after that, the latency of EBDKF becomes the lowest as the total length
of the link exceeds 70 km. When considering about the Maximum tolerable latency of 300 ms for the
SG applications intended in this context, the proposed method and diffusion technique will not violate
the latency requirement for both HANs and FANs. That is because the proposed method will require
at least 39 and 174 nodes for HANs and FANs, respectively, which are way above the limitations we
assumed for N considering physical length of links for those networks. However, for the AVG method,
it will require at least 11 nodes and 45 nodes to violate the latency requirement. Therefore, the AVG
method will fail latency requirement in HAN by a small margin when N is 11 and it will also fail when
the total length of the link in a FAN is high (exceeds 225 km in this case).

3.2. Simulations for Hierarchical Tree Structured Network

3.2.1. Simulations for Data Accuracy of a Deterministic Constant (Slowly Varying) Parameter Having
Bounded Sensor Noise

In this section, the mean square error of the network is analyzed by considering different network
sizes that vary from 20 to 240 in steps of 20 nodes. The heterogeneous measurement noise variances
are generated by setting b0 = 0.3 and a0 = 0.1. Figure 12 shows the network MSE comparison among
three different fusion techniques for the considered network sizes.
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Figure 12. Accuracy comparison among the proposed statistical, AVG, and EBDKF information fusion
methods in a tree-based IoT platform.

When observing the results in Figure 12, it can be seen that the accuracy of the sink node and
network using proposed method is always higher than that of conventional average method and the
performance gap between these two approaches reduces with the number of nodes. The accuracy
of those two methods become almost same when the number of nodes is greater than 120 for both
network and the sink node. When we increase the number of nodes in the network, sensor nodes
become closer to each other as the area in which sensor nodes are placed is maintained constant.
Therefore, the average link distance is reduced, even though the individual link distances vary, making
the resultant BER values of links in the network to be reduced. For example, when the number of
nodes is increased from 20 to 240, the BER of a link is reduced from 0.2289 to 0.000002 following the
shape similar to an inverse square law function. When the BER reduces, the performance gap of all
three fusion methods for sink node’s accuracy approaches a very low value, but the accuracy is in the
decreasing order of EBDKF, proposed method and average having a very low accuracy gap between
each of them.

EBDKF fusion technique has the highest accuracy out of all the methods when the number of
nodes is greater than 60 for both sink node and the network. The average BER value, when number
of nodes is equal to 60, is 0.0173. Therefore, the proposed method shows highest accuracy when the
average BER of a link is higher than 0.0173. When the number of Nodes is less than or equal to 40, i.e.,
when average BER of a link is greater than 0.0455, the EBDKF fusion’s accuracy degrades resulting
least accuracy out of the three methods. The performance gap between the network and the sink node
accuracy is very low. This can be explained as a result of both the network and the sink nodes having
equivalent number (1.87 exactly as derived in following section on complexity) of average neighbors
and since all nodes act as aggregating nodes. For chain-based network, the accuracy of sink node
and network almost overlapped as seen in Figure 4. However, in contrast, for tree-based network the
accuracy of the sink node had been always better than the network for proposed statistical method.
The performance gap of the accuracy of network and sink node for proposed method reduces as the
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BER is increased. Lower accuracy of the network can be explained as a result of 47% (refer section
on complexity evaluation) non-aggregating leaf nodes present in tree networks which do not use
any fusion technique, but only transmit the measurement to immediate node. In tree network, the
network MSE performance of the average method is higher than that of the chain-based network.
The reason for this can be predicted as the increment of the average number of child nodes for a given
node in tree-based network. In chain topology, the average number of child nodes is always equal to
one and in tree it is almost two such that mean values fused in tree is more accurate than chain for
average fusion. When comparing the accuracy of the average method for the tree network between
its sink node at network, it can be identified that the accuracy of the sink node for low BER is higher
than its network and vice versa. The performance of sink node and network has been similar when
the number of nodes is around 55, that is BER of 0.0214. This phenomenon can also be explained as
follows. The increment of BER does not affect the accuracy of the measurement in non-aggregating
nodes for average method. Therefore, at low BER values, the accuracy of the network is low as the
sensor noise of non-aggregating nodes have a significant impact. However, the accuracy of sink node
is always affected by change in BER values as it fuses two already fused results in average for tree
network. Therefore, under high communication errors, the sink node’s accuracy goes lower and the
network accuracy is maintained higher by the non-aggregating sink nodes whose accuracy does not
depend on BER s.

Further, there is no significant difference in network MSE of the proposed method between chain
and tree sensor networks when comparing Figure 4 with Figure 12. However, for very low BER values
(<10−5) in chain topology, the network MSE had been reduced to the level of EBDKF, whereas in tree
topology, there is no significant improvement in the accuracy of the proposed method for such BER
(220 < nodes < 240). The network MSE value of proposed method remain less than 0.31 for different
number of sensor node combinations (all combinations of average BER values) in the considered range
from 20 to 240 nodes. In comparison to these results, the MSE performance of EBDKF for very low
BER values is higher for tree topology than chain topology and vice versa. This can be also explained
as a result of increased branching in tree resulting higher number of neighbors for diffusion than
chain topology. In chain, there are maximum of only two neighbors to exchange local and individual
estimates. However, in tree topology as it will be proved in following section on complexity, there are
in average three neighbors per non-leaf nodes for diffusion to take place So, under low BER values the
diffusion process has increased the accuracy of network than chain by increased number of neighbors
and at the same time it has been worsen under high BER values. These arguments can be further
verified by analyzing the bit level accuracy under high and low communication errors as analyzed
later in this section.

To justify the network MSE values obtained for three different data fusion techniques in Figure 12,
and to visually represent the mean estimate, we plot the mean estimate and 95% confidence limits for
tree network as shown in Figure 13.

When analyzing the results obtained in Figure 13, it can be seen that for low BER values the
network mean estimate is very close to the system state of 1.8 for all data fusion techniques. In these
conditions, the 95% confidence interval is also narrow and its width is least in EBDKF and overlaps
for Average and proposed method proving the previous result obtained for network MSE for low
probability of communication errors. This is because we can say that when the confidence interval
for the results is higher, so is the network mean square error. The mean estimate of the proposed
method decreases slightly and remains very close to the real value of 1.8 when BER increases. But the
mean value tends to deviate more from real value of 1.8 when BER increases for other two data fusion
techniques where the EBDKF method having a moderate deviation and Average method having the
highest deviation. The reason for observing high network MSE for high BER for average and EBDKF
can be explained by looking at the increasing size of the 95% confidence interval for those two methods
as evident from Figure 5. In contrast, the proposed method’s confidence interval is only slightly increased
with increasing BER (decreasing nodes), so that it is showing least network MSE for high BER.
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Figure 13. Network Mean estimate and 95% confidence interval limits for a true state of 1.80;
compared among the proposed statistical, EBDKF, and AVG information fusion methods in a tree-based
IoT platform for different number of sensor nodes.

It is very important to understand the impact of number of data gathering cycles on the accuracy
of the estimate. Therefore, we plot the network MSE vs. the number of data gathering cycles as shown
in Figure 14.

Average bit error rate of 0.05 corresponds to 38 nodes and that of 0.0003 corresponds to 200
nodes in tree structure. We selected these two BER values because when BER is 0.05, the accuracy of
proposed method is higher than EBDKF and vice versa for BER of 0.0003 for 600 data gathering cycles
as proven in Figure 12. Indeed, all the results generated so far corresponded to 600 data gathering
cycles. As it is evident from Figure 14, the previous argument is unchanged for any data gathering
cycle. Only the MSE gap is changed with data gathering cycles. For all fusion methods, the network
MSE for high communication errors is always higher than that for low communication errors for any
data gathering cycle.

The proposed method shows the least deviation and thus the highest stability on the network
MSE against number of data gathering cycles. It shows higher fluctuations of network MSE for initial
data gathering cycles (for up to about 50 cycles) for both BER s than when number of data cycles are
much higher. Similar variation with data cycles is observed in AVG method, but its variations are
higher than proposed method and it consumes a higher number of data cycles for the network MSE to
get stabilized.

However, in contrast, the MSE performance with data cycles is different for data fusion scheme
EBDKF under high communication errors. As proved by Figure 14, the variation of proposed method
with data cycles even for high communication errors is almost same as that for low communication
errors. When it comes to the diffusion technique, the network MSE is always lesser than 1.0 until
first 28 data gathering cycles for BER of 0.05 case. After that, the network MSE value is often greater
than 1.0. On the other hand, for low communication error scenario, EBDKF tend to be less accurate
for initial data gathering cycles. That is because we can observe a big spike at 20 data cycles and a
smaller spike at 120 and no spike after that with highly stable MSE for the graph of EBDKF for BER of



Sensors 2020, 20, 567 31 of 45

0.0003 in Figure 14. Therefore, it can be deduced that accuracy of diffusion technique is better for low
data gathering cycles under high communication errors and vice versa. The proposed method has
clearly outperformed both AVG and EBDKF under BER of 0.05 for any data gathering cycle as it was
concluded for 600 data gathering cycles before. We further analyze the impact of BER on bit level error
characteristics in Figure 15.

 

a 

b 

Figure 14. Network MSE vs. the number of data gathering cycles for BER of 0.0003 and 0.05 among the
proposed statistical, AVG and EBDKF information fusion methods in a tree-based IoT platform: (a)
for first 600 data gathering cycles and (b) for first 50 data gathering cycles.

Two networks are simulated where network one has 38 nodes and network two has 98 nodes
corresponding approximately to average BER of 0.05 and 0.005, respectively. These values are selected
in order to have a fair comparison of the bit level accuracy among tree and chain topologies. When the
proposed statistical information fusion method is employed, the most significant 4 bits are successfully
recovered in both networks. The bit flipping in the most significant bits significantly change the
accuracy of the fused value. In network two (BER = 0.005), the average error probabilities of most
significant bits show lower values for both Average and proposed methods, in which the proposed
method has a slightly lesser value. This is the reason to have a lower performance gap between those
methods in Figure 12 and a low difference in confidence intervals in Figure 13, when network size is 98.
In these conditions EBDKF show highest accuracy since its MSB error percentage is 0.0306. But when
the BER is increased to 0.05 by network one having 38 nodes, a very high percentage increment of 4
significant bits of EBDKF is observed compared to BER of 0.005 case making its accuracy least whereas
in Average method a relative lower increment in percentage error in significant bits are observed.

When comparing Figure 15 with Figure 6, to have a comparison among chain and tree sensor
network accuracy wise performance, it can be seen that for Average method percentage increment of
errors of significant bits for BER of 0.05 is lower in tree network topology confirming the argument that
average fusion’s accuracy is higher in tree architecture than chain architecture. For both topologies, the
proposed method shows almost similar percentage errors proving that accuracy level of the proposed
method remains almost unchanged for chain and tree network topologies. Furthermore, under high
communication errors, bit level percentage error values of EBDKF fused results for tree topology is
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higher than chain topology proving that accuracy is worse than chain topology for high BER values.
Similarly, the converse of the preceding argument, that is bit level accuracy of chain is worse than tree
networks of EBDKF for low BER values. The measurement errors have higher impact on the least
significant bits. Therefore, we cannot see considerable improvement in the least significant bits 5, 6,
and 7 for any of the fusion techniques considered. Therefore, we omitted them in Figures 6 and 15 .

Figure 15. Bit level error performance comparison among the proposed statistical and the AVG
information fusion method in a tree-based IoT platform when (a) BER = 0.005 and (b) BER = 0.05.

It should be investigated how retransmissions affect the information accuracy in a tree structured
network that has increased branching with respect to chain structure which does not have any
branching. A theoretical upper bound for total data frame/packet transmission per data gathering cycle
can be derived similar to Equation (38) derived for chain structure. We follow the same notation used
for chain structure here also. We will derive in computation complexity section of fusion techniques
for tree structure that 53% of nodes are aggregating nodes in fusion schemes which have unidirectional
communication from source nodes to the sink node. Therefore, the total links of a tree structure is
(k− 1). Therefore, same upper bound in Equation (38) is valid for tree structure too. We extensively
simulate the retransmission allowed tree structure for different fusion techniques by varying the
maximum number of retransmissions allowed per hop to obtain the result given in Figure 16.

Number of nodes of the tree structure was selected as 38 corresponding to an average bit
error rate of 0.05 in which the accuracy of the proposed method is highest as it was observed in
Figures 12 and 13. Here we have made the assumption that communication channel errors are not
affecting on acknowledgment frames/packets so that an acknowledgment sent is always received.
It can be clearly observed in Figure 16 that the final results for Average and proposed methods are
similar to chain structure. That’s because proposed method does not show any significant improvement
in accuracy with retransmissions and the AVG method needs maximum of three retransmissions per
hop per data gathering cycle to achieve accuracy of the proposed method at a BER of 0.05. But, the
EBDKF method needs to set maximum retransmission per hop to a value of 2 to overcome the accuracy
of the proposed method. Therefore, L = 0, 2, 3 in proposed method, EBDKF, Average fusion methods
respectively in order to achieve a network MSE less than 0.3. As proved for chain structure, n = 1, 1, 6
for AVG, proposed method and EBDKF respectively. Therefore, by substituting in Equation (39)
for upper bound, Nproposed = (k − 1), NAVG = (4) ∗ (K − 1), NEBDKF = (18) ∗ (K − 1). Therefore,
expected lifetime of the nodes using diffusion technique for tree structure is lesser than that for
chain structure.
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Figure 16. Network MSE comparison among the proposed statistical, AVG, and EBDKF information
fusion methods in a retransmission allowed tree structured network when BER is 0.05.

3.2.2. Evaluation of Complexity of Information Fusion

In tree-based network, multiple nodes can be connected to a fusing node. If the fusion node
act as a small clusters head, the cluster head might have high computational complexity. Therefore,
we analyze total number of fusion nodes in a tree network with minimum distance neighbor connection
method that was specified earlier as depicted in Figure 17.
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Figure 17. Average number of fusion nodes and total child nodes in tree-based IoT platform using
maximum reliable connection method for different fusion techniques.

It can be observed in Figure 17 that approximately 53% of nodes act as aggregating nodes in
networks using average and proposed method while all the nodes act as aggregating nodes in Diffusion
Kalman Filtering techniques. As it can be observed in simulation results, the total number of child
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nodes in networks using average and proposed method for fusion has N − 1 number of total child
nodes, and a network using EBDKF will have 2 ∗ (N − 1) total child nodes where N is the total
number of nodes. Therefore, the average number of child nodes per aggregating nodes of the network
represented by nchild for proposed and average fusion techniques will be as depicted in Equation (40).

nchild =
(N − 1)
0.53N

=∼∼∼ 1.87
(40)

when N is high, nchild value given in Equation (40) is close to 2. The leaf nodes for these fusion schemes
have no child nodes. Now we will derive the nchild for EBDKF as shown in Equation (41).

nchild =
2 ∗ (N − 1)

N

=∼∼∼ 2
(41)

As it is evident from the Equation (41), a network employing EBDKF will also have average
number of child nodes per aggregating nodes of the network almost equal to 2. Therefore, the average
computational complexity of an aggregating node will be as if each aggregating node has two children
for all of the data fusion techniques considered in this context. The number of leaf nodes for EBDKF are
still 0.47(N − 1) having one child per each node. Therefore, the total number of child nodes remaining
for intermediate nodes will be as given in Equation (42).

2 ∗ (N − 1)− 0.47 ∗ (N − 1) = 1.53(N − 1) (42)

As there are 0.53(N − 1) number of non-leaf nodes for EBDKF fusion, the average number of
child nodes per non-leaf nodes (nchildnon−lea f

) is given by Equation (43) as,

nchildnon−lea f
=

1.53(N − 1)
0.53(N − 1)

= 2.87
(43)

Therefore, as seen from Equation (43), the non-leaf nodes will have in average close to 3 child
nodes. The root node is also a non-leaf node. Therefore, the root (sink) node will have in average
1.87 nodes that is approximately two nodes which is one lesser than a typical non-leaf node. So, the
average number of child nodes for both the sink node and the network for a tree structured diffusion
scheme is equivalent to two. Therefore, the average fusion complexity of the network and the fusion
center (sink node) must be equivalents.

In chain-based WSNs, each node has only one child. Thus, each node needs to combine only two
data frames/packets during the fusion process except the first node for AVG and proposed statistical
method. But when it comes to the tree topology, an aggregating node needs to combine in average
three data frames/packets in average considering the network. Two of them are information sent from
the child nodes and the other is the self-measurement.

Now we will consider about the complexity of diffusion technique. The average number of
neighbors of EBDKF for both chain and tree topology were proved to be two nodes in previous
sections. Therefore, the fusion complexity of chain and tree topology for diffusion technique must be
equivalent. The number of CPU cycles of the microprocessor and the corresponding complexity TA
for each fusion function considering two children per aggregating node as argued above, are given in
Table 4. We use Atmel Studio 7 to evaluate the complexity.



Sensors 2020, 20, 567 35 of 45

Table 4. CPU overhead of different information fusion functions for hierarchical network.

Fusion Function CPU Cycles Time ((TA)(µs))

Average 48 3
Proposed method 156 9.75

EBDKF 252 15.75

When considering the results obtained in Table 4, it can be seen that the average complexity of the
proposed method is 3.25 times that of average, whereas the complexity of EBDKF has been 5.25 times
that of average fusion complexity. When we compare the above result with the results obtained for
complexity in information fusion functions for chain-based networks in Table 2, it can be seen that
the average complexity of all fusion functions except EBDKF have been increased by 33.33%, 21.875%
for average, proposed method respectively. Therefore, the increment of complexity of information
fusion is least for Diffusion Kalman Filtering. In average, the AVG method will require three additions
and one division, whereas the proposed statistical information fusion requires four additions, seven
divisions, and one multiplication whereas the EBDKF fusion will require in average, 14 additions, four
divisions and eight multiplications. Thus, still the complexity of diffusion technique is highest even
though the topology is changed from chain to tree topology.

3.2.3. Network Lifetime

In this section, we consider a network that consists of 38 nodes to analyze the network lifetime.
The BER of a link is approximately equal to 0.05. The heterogeneous measurement noise variances are
generated by setting b0 = 0.3 and a0 = 0.1. When AVG is used as fusion function, we allow maximum
3 retransmission attempts for each hop per data gathering cycle and when EBDKF is employed,
2 maximum retransmission attempts are set as justified in the previous section on retransmission
allowed tree structure. The initial energy levels for nodes are assigned randomly between 10 mJ
and 50 mJ using a uniform distribution. The total energy consumption of a link is determined using
the Equation (10). All the parameters in Equation (10) are similar to the values we specified for the
chain-based network simulations. Here, we monitor the number of nodes active in the network for
different fusion techniques in order to achieve similar accuracy of the network. The information
retransmission is therefore employed to improve the accuracy in EBDKF and AVG methods to achieve
accuracy just higher than the proposed method. Figure 18 depicts the number of active nodes in
the network when we use the proposed statistical, Diffusion Kalman Filtering and AVG methods in
tree-based network at BER of 0.05. We run extensive simulations and record number of total active
nodes at each time step for 100 data gathering cycles and replicate for 50 times.

As it can be clearly identified in Figure 18, with the proposed statistical method, the network can
have 34 data gathering cycles using all nodes. This value goes down to 9 and 1 in AVG and EBDKF
fusion techniques, respectively. The energy of the information and acknowledgment retransmissions
becomes the dominant factor when deciding the network life time. The proposed method does not
need to use any retransmissions to achieve better accuracy such that it can save energy on additional
data transmission and reception, and acknowledgment transmission and reception. Therefore, the
network lifetime is much longer than AVG and EBDKF methods. Further, it can be observed that the
rate of losing active nodes in EBDKF method is higher than both AVG and proposed methods. It can
be observed that after 42 data gathering cycles when network using EBDKF fusion loses all of the
nodes, network with proposed method and AVG will lose only 2.6% and 15.8% of nodes respectively.
Therefore, the network lifetime in decreasing order is proposed method, AVG and EBDKF respectively.
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Figure 18. Network lifetime comparison for 3 information fusion methods in a tree-based IoT platform
having 38 nodes.

3.2.4. Network Latency

A similar analysis on network latency for tree structure can be performed as it was done for
chain-based networks. The sink node can be considered to be in the center of a circle covered by other
nodes of the network where the maximum length of the link is the radius of that circle. Therefore, N
is the number of nodes in such a radius. To cover a similar area that was covered for chain, we can
assume that maximum number of nodes in longest link of tree network as half of maximum nodes that
can exist in chain network. That is, N is 6 and 51 for HANs and FANs, respectively, thus expecting the
total length of the communication between furthest source node and sink node to be less than 250 m
and 250 km for HANs and FANs, respectively. Therefore, maximum expected latency of both AVG and
proposed methods reduce by almost half that of latency expected for chain-based networks. Therefore,
for tree-based networks, conclusions on network latency of the proposed method and EBDKF are same
as that of chain-based networks. But in tree structured networks the AVG method can also satisfy the
latency requirement in HANs and violates the latency requirement of FANs when N is greater than or
equal to 45 as the maximum length of communication substantially has been reduced compared to
chain-based networks.

3.3. Simulation for Data Accuracy in Randomly Placed Non-Hierarchical Bidirectional Graph

3.3.1. Simulations for Data Accuracy of a Deterministic Constant (Slowly Varying) Parameter Having
Bounded Sensor Noise

The link distance is unchanged and the BER of a link is varied by varying the path loss exponent
to obtain the average bit error rate of a link in the network using analytical model given in [56].
First, a network MSE comparison of data fusion techniques with data cycles is obtained as shown in
Figure 19.

Bit error rates of 0.05 and 0.0003 were selected for comparison as it was done for tree structure.
Only the MSE gap is changed with data gathering cycles. For all fusion methods, the network MSE
for high communication errors is always higher than that for low communication errors for any data
gathering cycle.

The proposed method shows the least deviation and thus the highest stability on the network
MSE against number of data gathering cycles. It shows higher fluctuations of network MSE for initial
data gathering cycles (for up to about 40 cycles) for both BER s than when number of data cycles are
much higher. Similar variation with data cycles is observed in AVG method but its variations are
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higher than proposed method and consume a greater number of data cycles for the network MSE to
get stabilized.

However, in contrast, the MSE performance with data cycles is different for data fusion scheme
EBDKF under high communication errors. As proved by Figure 19, the variation of proposed method
with data cycles even for high communication errors is almost same as that for low communication
errors. When it comes to the diffusion technique, the network MSE is most of the time lesser than
1.0 for first 50 data gathering cycles for BER of 0.05 case. After that, the network MSE value is often
greater than 1.0. On the other hand, for low communication error scenario, EBDKF tend to be less
accurate for initial data gathering cycles; this is because we can observe smaller fluctuations in MSE
within first 50 data cycles and highly stable MSE for data cycles closer to 600 of EBDKF for BER of
0.0003 in Figure 19. Therefore, it can be deduced that accuracy of diffusion technique is better for low
data gathering cycles under high communication errors and vice versa. The proposed method has
clearly outperformed both AVG and EBDKF under BER of 0.05 for any data gathering cycle except for
data cycles 13 to 15 and 45 to 49.

 

a 

b 

Figure 19. Accuracy comparison with Data gathering cycles for BER s of 0.0003 and 0.05 (a): For first
600 Data gathering cycles (b): For first 50 Data gathering cycles.

We plot the network MSE versus the communication errors for AVG, proposed method and
EBDKF for the previously discussed unstructured sensor network as shown in Figure 20.

The result obtained in Figure 20 is very similar to the result obtained for tree structure seen in
Figure 12. Further, conclusions derived based on Figure 19 are also very similar to those derived on
tree structure. Therefore, similar conclusions can be derived on the accuracy of unstructured network
for three different fusion techniques. Therefore, the accuracy-wise performance of the information
fusion techniques can be expected to be almost unchanged when the network gets nonhierarchical
from hierarchical.



Sensors 2020, 20, 567 38 of 45

1e-06 1e-05 0.0001 0.001 0.002 0.005 0.0075 0.01  0.0175 0.025 0.0375 0.05  

Bit Error Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
ea

n 
S

qu
ar

e 
E

rr
or

Network MSE of AVG
Network MSE of Proposed Method
Network MSE of EBDKF

Figure 20. Accuracy comparison of 3 different fusion techniques for an ad hoc-type network.

3.3.2. Evaluation of Complexity of Information Fusion

In this section, we will generalize the complexity of information fusion in an unstructured network
which retransmissions are not allowed. Let “j” be the average number of neighbors of the unstructured
network. In chain and tree-based networks, the value of j was approximately 1 and 2, respectively.
However, for unstructured network j can be any value depending on the instance of the network.
For instance, the network that we used for simulation in Figure 3 has j = 3.2. j can be obtained using
Equation (44).

j =
N

∑
i=1

(degree− 1)
N

(44)

where i is the ith node and N is the total number of nodes. In other words, each node of the network in
average needs to fuse j number of frames/packets received from neighbors per data gathering cycle
for AVG and proposed methods whereas EBDKF will receive 3j frames/packets. Table 5 summarizes
the complexity of information fusion when j varies in an ad hoc-type Network.

As it can be observed from the generalized results in Table 5, the average fusion complexity will
be in decreasing order of EBDKF, proposed method and AVG.
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Table 5. Average fusion complexity per node for different information fusion functions in a
bidirectional graph.

j Fusion Function Complexity of Fusion

1 Average 2 Additions, 1 division
1 Proposed method 2 Additions, 5 divisions, 1 multiplication
1 EBDKF 6 Additions, 4 divisions, 8 multiplications
2 Average 3 Additions, 1 division
2 Proposed method 4 Additions, 7 divisions, 1 multiplication
2 EBDKF 10 Additions, 4 divisions, 8 multiplications
3 Average 4 Additions, 1 division
3 Proposed Method 6 Additions, 9 divisions, 1 multiplication
3 EBDKF 14 Additions, 4 divisions, 8 multiplications
n Average (n + 1) Additions, 1 division
n Proposed Method 2n Additions, 3 + 2n divisions, 1 multiplication
n EBDKF (4n + 2) Additions, 4 divisions, 8 multiplications

3.3.3. Network Lifetime

In this section, we investigate the network lifetime of a bidirectional graph in which
retransmissions are not allowed. When retransmissions do not occur, the energy on acknowledgment
frame/packet transmission and reception will be zero. Therefore, the Equations (7) and (8) will reduce
to Equations (45) and (46), respectively.

ETX = X(Pc + Pt/η)(Ld/Rd)) (45)

ERX = X(PrLd/Rd) (46)

As proved in the complexity section, X = j, j, 3j for Average, Proposed, and EBDKF fusion
techniques, respectively. Pc also varies depending on the complexity of the information fusion
technique. Since the complexity of the three fusion techniques increase in the order of Average,
Proposed and EBDKF; Pc is also expected to vary in the same manner. By arguing in this manner
and using Equations (45) and (46); it can be derived that for an ad hoc network which retransmissions
are not allowed, the network lifetime in decreasing order is Average, Proposed method and EBDKF.
We simulate the network given in Figure 3 where j is approximately 3 to prove the preceding argument
as shown in Figure 21. For this experiment also, we use Atmel studio 7 to evaluate the processing
cycles to obtain the CPU time as shown in Table 6.
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Figure 21. Network Lifetime comparison of three different fusion techniques for an ad hoc-type
network.

Table 6. CPU overhead of different information fusion functions for randomly placed
non-hierarchical graph.

Fusion Function CPU Cycles Time ((TA)(µs))

Average 60 3.75
Proposed method 180 11.25

EBDKF 1387 86.6875

It can be observed that a similar performance with respect to network life time occurs when
we employ the proposed statistical method and AVG method by observing the results in Figure 11.
When the proposed statistical method or AVG is employed, 12 data gathering cycles are possible
prior to losing the first node in the network. This value is much lower with respect to 59 obtained
for proposed method in chain-based network as it was observed in Figure 11. The reason for the
difference occurs as in the unstructured network considered, a node in average broadcasts 3 data
frames/packets in a data cycle while in chain-based network it was only one. When observing Table
6, it can be observed that the fusion complexity of proposed method is three times that of average
method. In spite of that, the network lifetime has been similar because of the equal j values and no
retransmissions are allowed. The energy consumed for data fusion has been less significant with
respect to the energy consumption for transmissions. That is because when combined with the fact that
energy for transmitting a single bit is quite expensive than computing a single instruction, the energy
consumption for the computational complexity of the proposed statistical method can be neglected.

On the other hand, in EBDKF, the first node is died after four data gathering cycles. Further,
we can observe that by 97 data gathering cycles, networks employing Average fusion and proposed
method had lost 85% of nodes and EBDKF has lost all of its nodes. When observing Table 6 it is very
clear that highest computational consumption for fusion belongs to EBDKF method and j = 9 are the
reasons for having least network lifetime out of fusion techniques. Therefore, the simulation results
agree with the theoretical predictions that we made earlier.

3.3.4. Network Latency

Using Equations (21) and (22), network latency of bidirectional ad hoc networks that
separately uses AVG, EBDKF, and proposed statistical information fusion methods can be calculated.
All parameters used in analysis of network latency for chain-based networks are substituted in
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Equations (21) and (22) except for parameters given in following text. As there are only one sixth of
packets or frames/packets waiting to be served, it can be assumed that for networks with proposed
method and AVG that tqu = 0.1/6 ms. K is kept as a generic value without setting a value.
Fusion times (t f u) are obtained from Table 6. Table 3 summarizes the network latency values calculated
in this manner.

It can be observed from the results in Table 7 that when comparing the total latency value of
latency due to information fusion (t f u) can be neglected. None of the fusion techniques violate the
latency requirement for both HANs and FANs up to K = 6. If K values are equal, the fusion methods
in the increasing order of network latency will be Average method, proposed method and EBDKF.
AVG method very slightly outperforms the proposed method by 7.5 µs such that network latency
of proposed method is almost equal to that of AVG in network with same K values. However, as
it was described in sensor networks using chain and tree structured networks, to achieve the same
level of low accuracy as the proposed method under high BER conditions that exist in Smart Grid
environments, retransmissions have to be allowed in networks deploying AVG and EBDKF. In that
case, Proposed method will outperform both other fusion methods.

Table 7. Network latency of different information fusion functions for non-hierarchical sensor network.

Fusion Function Latency for Zig Bee (ms) Latency for WCDMA (ms)

Average 8.034(K + 1) + 0.00375 1.775(K + 1) + 0.00375
Proposed Method 8.034(K + 1) + 0.01125 1.775(K + 1) + 0.01125

EBDKF 49.202(K + 1) + 0.0867 11.65(K + 1) + 0.0867

4. Conclusions

Measurement errors, quantization errors, and transmission errors are the three major sources of
errors that affect the information fusion performance of IoT platforms in smart grids. We incorporate
the statistical properties of these errors to information fusion to improve the information accuracy.
The proposed statistical information fusion function not only shows highest information accuracy on
popular information fusion structures, namely, chain and tree, but also in ad hoc networks under high
communication errors (BER > 0.0175) when compared with AVG and EBDKF fusion methods. Further,
for chain network EBDKF outperformed the proposed method’s accuracy for 10−5 < BER < 10−2 and
for tree structure and ad hoc-type networks when BER < 0.017. The accuracy of EBDKF fusion method
varies having a high deviation for initial data gathering cycles under high communication errors while
network MSE performance of all fusion techniques are considerably stable under low channel errors.
The computational complexity of fusion techniques is always in the increasing order of AVG, proposed
and EBDKF methods, respectively. When retransmissions are not allowed, simulation results prove
that the proposed method achieves a network lifetime similar to AVG method and outperform the
diffusion techniques for any BER. Fusion functions use different techniques such as retransmissions
and redundant node deployment to improve the information accuracy under high communication
errors. As the proposed statistical approach does not require these supporting techniques, it not only
saves a large amount of energy and results in a longest network life time, but also leads to least network
latency in HANs for both structured and unstructured networks and FANs in ad hoc-type networks
outperforming both AVG and EBDKF in retransmission allowed networks. Further, the proposed
method satisfies the maximum tolerable network latency requirement of 300 ms for SG applications
targeted in this context for both FANs and WANs in all types of networks. When proposed method
is used in structured FANs such as chain and tree, EBDKF outperformed the latency of proposed
method when the link length is high. Therefore, under smart grid communication conditions, the
proposed method is having the highest accuracy and network lifetime for all chain, tree and graph
networks. When the effect of all the factors such as information accuracy, fusion complexity, latency
and energy efficiency are combined, even under low communication errors, the overall performance
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of the proposed method can be considered to be higher than other fusion techniques considered in
this context.
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Appendix A. Proof of the Upper Bound (17)

We denote information fusion node as K and a child node as i where i = 1, 2, . . . , K − 1.
We substitute σ2

r′i
= σ2

i , σ2
sK = σ2

K and ei = K− 1 in Equation (34). Then, we have to prove,

(
K

∑
i=1

1/σ2
i)

−1

≤ 1/(K)2
K

∑
i=1

σ2
i (A1)

When K = 2,

(
K

∑
i=1

1/σ2
i)

−1

= (1/σ2
1 + 1/σ2

2)
−1

≤ (σ2
1 + σ2

2)
2
/(4(σ2

1 + σ2
2))

≤ (σ2
1/4) + (σ2

2/4)

(A2)

The inequality in the second step is due to the fact that 2σ21
σ2

2 ≤ (σ2
1 + σ2

2) Therefore,
Equation (A1) holds. Now assume the result in Equation (A1) holds for any i = n ≥ 2. We have

(
n

∑
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1/σ2
i)
−1
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n

∑
i=1

σ2
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n2 ≤
n
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i=1
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n

∑
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(σ2
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−1

(A3)

Add another child to the node K where variance of a child node is σ2
n+1. Then, we have the right

side of above inequality. We can also write,

n2 +
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Now consider,
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∑
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(A5)

The above inequality is based on the result of Equation (A2). Now, we can write Equation (A4) as,

(n + 1)2 ≤
n+1

∑
k=1

σi
2

n+1

∑
i=1

(σi
2)
−1

(
n+1
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i=1
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n+1

∑
i=1

σi
2

(A6)

This concludes the proof by mathematical induction.
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