TABLE OF CONTENTS

ACKNOWLEDGEMENTi
DEDICATIONiii
LIST OF TABLESiv
LIST OF FIGURESviii
LIST OF SCHEMESxvi
CHAPTER 1 1
INTRODUCTION 1
1.1 C-C Bond Activation of Hydrocarbon Molecules 1
1.1.1 Stoichiometric C-C Bond Activation Reaction
1.1.2 Catalytic C-C Bond Activation Reactions
1.1.2.1 C-C Bond Activation of Strained Molecules
1.1.2.2. C-C Activation of Unstrained Molecules7

1.1.2.3. Chelate Assisted C-C Bond Activation Reactions of Unstrained Molecules. 8
1.1.2.4 Alkene/Alkyne Insertion Reactions via C-C Bond Cleavage
1.2. Catalytic C-N Bond Activation Reactions
1.2.1 Heterogeneous Hydrodenitrogenation of Nitrogen Heterocycles 15
1.2.1 Hydrodenitrogenation Reactions Catalyzed by Soluble Metal Complexes
1.2.2. Catalytic Deaminative C-N Cleavage Reactions
1.2.2.1 C-N Bond Cleavage of Allylic Amines
1.2.2.2 C-N Cleavage of Arylamines
1.2.2.3 C-N Cleavage of Secondary and Tertiary Amines
1.2.2.4 Biochemical Deamination Reactions
CHAPTER 2: PART 1: Transition Metal Catalyzed C-O Bond Activation Reactions 33
2.1 Transition Metal Catalyzed Hydrogenolysis of Carbonyl Compounds
2.1.1 Classical Carbonyl Reduction Methods
2.1.2 Wolff–Kishner Reduction
2.1.2.1 Catalytic Modification to Wolff-Kishner Reduction
2.1.3 Clemmensen Reduction

2.1.4 Reduction of ketone/aldehydes using aluminum, silane etc	37
2.1.5 Homogeneous Catalytic Reduction Methods	38
2.1.6 Reductive Deoxygenation of Ester, Amide, and other Carbonyl Compounds	40
2.1.7 Hydrogenolysis of C-O Bonds	46
2.1.7.1 Hydrogenolysis of Aryl Ethers	46
CHAPTER 2: PART 2: Transition Metal Catalyzed Ether Synthesis	57
2.2.1 Introduction	57
2.2.2 Classical Methods	58
2.2.2.1 O-Alkylation	58
2.2.2.2 Mitsunobu Etherification	58
2.2.2.3 Etherification by Using DialkylPhosphites	59
2.2.3 Cross-coupling Reactions	61
2.2.3.1 Ullman Reaction	62
2.2.4 Catalytic Etherification Methods	65
2.2.5 Etherification by [IrCl ₂ Cp*(NHC)] Catalyst	68
2.2.6 dehydrative Etherification of Alcohols	70
2.2.7 Additions to Unsaturated Bonds	72

t in the second s

2.2.7.1 Wacker-type Reaction	72
2.2.7.2 Hydroetherification of Unactivated Aliphatic Alkenes	74
2.2.8 Dehydrative Coupling of Alcohols by Sodium Bisulfite	76
2.2.9 Reductive Etherification	77
CHAPTER 3: Synthesis and Mechanistic Studies of Deaminative Coupling Reactions of Amines with Alcohols	of 84
3.0. Introduction	84
3.1 Results and Discussion	90
3.1.1 Synthesis and Mechanistic Studies of Deaminative Coupling Reactions of Amines	.90
3.1.2 Optimization Study	.93
3.1.2.1 Catalytic Survey	.93
3.1.2.2 Solvent and Temperature Effect Studies	. 93
3.1.3 Reaction Scope	.96
3.1.4 Mechanistic Study	103
3.1.4.1 H/D exchange experiment	103
3.1.4.2 Hammett Study	104
3.1.4.3 Carbon Isotope Effect Study	106

ţ

L

ι . .

3.1.4.4 Proposed Mechanism	108
3.2 Synthetic and Mechanistic Studies of Decarboxylative and Deaminative Coupling Reactions of Amino Acids with Ketones	112
3.2.1 Optimization of Reaction Conditions	113
3.2.1.1 Catalytic Survey	113
3.2.1.2 Solvent and Temperature Effects	115
3.2.1.3 Catalyst Loading	116
3.2.2 Reaction Scope	117
3.2.3 Mechanistic Studies	124
3.2.3.3 H/D exchange Experiments	124
3.2.3.4 ¹³ C-Kinetic Isotope Effect	125
3.2.3.5 Hammett Study	127
3.2.3.6 Formation of Intermediate Products	128
3.2.4 Proposed Mechanism	128
3.2.5 Conclusion:	130
CHAPTER 4: Synthetic and Mechanistic Studies of Reductive Deoxygenation and Hydrogenolysis of Aldehydes and Ketone and Hydrogenolysis of Alcohols	133
4.0 Introduction	133
4.1 Results and Discussion	134

4.2 Optimization studies 137
4.2.1 Catalyst, Ligand and Solvent Screening
4.1.1.1 Catalytic Loading and Solvent Effect139
4.3 Reaction Scope140
4.4 Mechanistic Studies 145
4.4.1 Hammett Study 145
4.4.2 Kinetic Isotope Effect
4.4.3 Deuterium Isotope Effect148
4.4.4 Carbon Isotope Effect155
4.4.5 Deuterium Labeling Study157
4.4.6 Determination of Emperical Rate Law162
4.4.6.1 Catalyst Concentration Dependance162
4.4.6.2 Dependance of Substrate Concentration163
4.4.6.3 Effect of Hydrogen Pressure165
4.5 Isolation and Characterization of Catalytically Relevant Ruthenium Complexes. 167
4.5.1 Catalyst Concentration Dependance Study
4.6 Determination of pKa of Ru-H complexes

4.7 Proposed Mechanism	180
4.8 Conclusion	187
CHAPTER 5:Synthetic and Mechanistic Studies of Ruthenium Catalyzed Reductive Etherification of Carbonyl Compounds and Alcohols	e 188
5.0 Introduction	188
5.1 Result and Discussion	1 9 0
5.1.1 Optimization Studies	190
5.1.1.1 Catalyst Screening	190
5.1.1.2 Solvent and Temperature Effects	192
5.1.2 Optimization of Turnover Number (TON) and Turnover Frequency (TOF)	193
5.2 Reaction Scope	194
5.2.1 Reaction Scope of Synthesis of unsymmetrical Ether by Ruthenium Catalyzed Reductive Etherification of Carbonyl Compounds and Alcohols	194
5.2.2 Reaction Scope of Synthesis of Unsymmetrical Ethers from the Dehyd Coupling of Highly Functionalized Bioactive Alcohols	lrative 199
5.3 Determination of X-ray Crystallography	200
5.4 Mechanistic Studies	201
5.4.1 Hammett Study	201
5.4.2 Solvent Isotope Effect	203

5.4.3 H/D Exchange Experiment	
5.4.4 Carbon Isotope Effect	
5.4.5 Identification of catalytic active intermeditaes	
5.5 Proposed Mechanism	
5.6 Conclusion:	
CHAPTER 6: EXPERIMENTAL SECTION	
6.0 General Information219	
6.1. Synthesis and Mechanistic Studies of Deaminative Coupling Reactions of Amines with Alcohols	
6.1.1 General Procedure for the Coupling Reaction of an Amine with an Alcohol.220	
6.1.2 Synthesis of Ru catalysts	
6.1.3 Synthesis of $[(\eta^6-C_6H_6)RuH(CO)(PCy_3)]^+BF_4^-(2)$	
6.1.4 Catalyst Screening for the Alkylation of 2-Butanol with 3- methoxybenzylamine	
6.1.5 Deuterium Labeling Study 222	
6.1.6. Carbon Isotope Effect Study 222	
6.1.7 Hammett Study 223	
6.1.8 Characterization of Organic Products	

١.

6.2 Rea	Synthesis and Mechanistic studies of Decarboxylative and Deaminative Coupling actions of Amino Acids with Ketones	. 238
	6.2.1 Catalyst Screening for the Alkylation of 4-methoxyacetophenone with L- leucine	. 238
	6.2.2. General Procedure for the Coupling Reaction of an Amino Acid with a Ketone	. 238
	6.2.3. H/D Exchange Reaction of Acetophenone- d_8 with (S)-Leucine	. 239
	6.2.4 Carbon Isotope Effect Study	. 239
	6.2.5 . Hammett Study	. 240
	6.2.6 . Characterization Data of the Products.	. 241
6 C F	3.3. Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbo Compounds Catalyzed by a Cationic Ruthenium-Hydride Complex with Tunable Phenol Ligands	nyl . 257
	6.3.1. Experimental Procedures	. 257
	6.3.2 Ligand Screening and Optimization Study	. 258
	6.3.2 Hammett Study	. 260
	6.3.3 Deuterium Isotope Effect Study.	. 260
	6.3.4 Carbon Isotope Effect Study	. 263
	6.3.5 Deuterium Labeling Study	. 265
Ň	6.3.6 Empirical Rate Measurements: Catalyst Concentration Dependence	. 268

ζ.

6.3.8 Ketone Substrate Dependence Study	
	272
6.3.9 Hydrogen Pressure Dependence	274
6.3.10 Isolation and Characterization of Catalytically Relevant Ruthenium Complexes	277
6.3.11 X-Ray Crystallographic Determination of 8a, 8c, 8e, 10 and 11	280
6.3.12 Characterization Data of the Products	286
6.3.13 X-Ray Data:	301
6.4 Synthetic and Mechanistic Studies of Ruthenium Catalyzed Reductive Etherification of Carbonyl Compounds and Alcohols	308
6.4.2 Experimental Procedures	308
6.4.3 Catalyst Screening Study	290
6.4.4 Determination of TON	291
6.4.5 Hammett Study	291
6.4.6 Solvent Isotope Effect Study.	292
6.4.7 H/D Exchange Reaction of 4-Methoxybenzaldehyde with 1-Butanol in D_2O	294
6.4.8 Carbon Isotope Effect Study	295
6.4.9 Generation and Synthesis of the Alcohol and Aqua Complexes 7.8 and	

6.4.10 X-Ray Crystallographic Determination of 3d, 3e, 3f, 9,10 and 11	
6.4.10 Characterization Data of the Products	303
6.4.11 X-Ray Data:	320
BIBLIOGRAPHY	

-

--

X .

LIST OF TABLES

Table 3.1: Catalyst Survey on the Reaction of Coupling Product 14 of 3- methoxybenzylamine with 2-butanol
Table 3.2: Solvent Effect on the Reaction of 3-Methoxybenzylamine and 2- Butanol
Table 3.3: Deaminative Coupling of Amines with Alcohol
Table 3.4: Deaminative Coupling of Secondary Amines and Biologically Active Compounds.
Table 3.5: Calculated Average 13 C KIE from Virgin (R_0) and Recovered (R)Samples of Octanophenone
Table 3.6: Catalyst Screening for the Coupling of 4-methoxyacetophenone with L-leucine. 105.
Table 3.7: Solvent Effect on the Reaction of Leucine with 4- Methoxyacetophenone
Table 3.8: Catalyst Loading Effect on the Reaction of Leucine with 4- Methoxyacetophenone 108.
Table 3.9: Decarboxylative and Deaminative Coupling of α-Amino Acids with Ketones
Table 3.10: Decarboxylative and Deaminative Coupling of β-Amino Acids with Ketone 112.

`

.

iv

Table 3.11: Decarboxylative and Deaminative Coupling Reaction of Biologically Important Ketones and Peptides
Table 3.12: Average 13 C Integration of the Product 14k at High Conversion (R_0 ; 96 %conversion), at Low Conversion (R ; avg 18 % conversion) and the Calculated 13 CKIE
Table 4.1: Ligand Screening for the Hydrogenolysis Reaction of 4- Methoxyacetophenone 127
Table 4.2: Reaction Scope of Catalytic Hydrogenolysis of Aldehydes and Ketones 130
Table 4.3: Deoxygenation of Biological active Ketone/Aldehyde Compounds
Table 4.4: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenonewith H2/D2 with p-X-C6H4OH as the Ligand
Table 4.5: Average 13 C Integration of the Product 6j-[c1] at High Conversion (Virgin , R_0 ; 96 % conversion), at Low Conversion (R ; avg 18 % conversion) and the Calculated 13 C KIE using 4-Methoxyphenol as the Ligand
Table 4.6: Average 13 C Integration of the Product 6j-[c2] at High Conversion (Virgin , R_0 ; 96 % conversion), at Low Conversion (R ; avg 18 % conversion) and the Calculated 13 C KIE using 4-Trifluoromethylphenol as the Ligand
Table 4.7: Selected Spectroscopic Data for Complexes 8a-g
Table 4.8: Selected Physical Parameters of Complexes 5, 8a and 8f
Table 4.9: Summary of Kinetic Parameters for the Hydrogenolysis of Aryl ketoneCatalyzed by $5/p$ -X-C ₆ H ₄ OH (X = OMe, CF ₃)
Table 5.1: Catalyst Survey for the Reaction of 4-Methoxybenzaldehyde with 1- Butanol ^a 177

• · · ·

L

Table 5.3: SynthAlcohols	thesis of Unsymmetrical Ethers from the Dehydrative Coupling	g of 182
Table 5.4: Synth of Carbonyl Cor	thesis of Unsymmetrical Ethers from the Reductive Coupling mpounds with Alcohols	
Table 5.5: Calco Samples of 2f.	culated Average ¹³ C KIE from Virgin (R_0) and Recovered (R)	195
Table 6.1: Ligar Methoxyacetopł	and Screening for the Hydrogenolysis Reaction of 4- henone	24
Table 6.2: Aver 96% conversion KIE using 4-ON	rage ¹³ C Integration of the Product 6j at High Conversion (Vin a), at Low Conversion (R ; avg 18% conversion) and the Calcu MeC ₆ H ₄ OH as the ligand	rgin, <i>R</i> ₀ ; lated ¹³ C 24
Table 6 2. Avier	¹³ C Leternetice of the Declark Cost High Comparison (Mi	· p
96% conversion KIE using 4-CF	rage ¹³ C Integration of the Product 6] at High Conversion (V in h), at Low Conversion (R ; avg 18% conversion) and the Calcu F_3 -C ₆ H ₄ OH as the ligand	lated ¹³ C $\dots 2^2$
Table 6.3: Aver 96% conversion KIE using 4-CF: Table 6.4: Cryst	rage $^{\circ}$ C Integration of the Product 6 J at High Conversion (VII a), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu F_3 -C ₆ H ₄ OH as the ligand	-gin, <i>R</i> ₀ ; lated ¹³ C 24
Table 6.3: Aver96% conversionKIE using 4-CF:Table 6.4: CrysTable 6.5: Crys	rage 10 C Integration of the Product 6 J at High Conversion (VII a), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu $^{2}_{3}$ -C ₆ H ₄ OH as the ligand stal Data and Structure Refinement for 8a	-gin, <i>K</i> ₀ ; lated ¹³ C 24 21
Table 6.5: Aver96% conversionKIE using 4-CF:Table 6.4: CrysTable 6.5: CrysTable 6.5: Crys	rage $^{\circ}$ C Integration of the Product 6 J at High Conversion (VII a), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu F_3 -C ₆ H ₄ OH as the ligand stal Data and Structure Refinement for 8a stal Data and Structure Refinement for 8a '	rgin, <i>R</i> ₀ ; lated ¹³ C 2 ² 21
Table 6.5: Aver96% conversionKIE using 4-CFTable 6.4: CrysTable 6.5: CrysTable 6.6: CrysTable 6.7: Crys	rage ¹³ C Integration of the Product 6J at High Conversion (Vir n), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu 5 ₃ -C ₆ H ₄ OH as the ligand stal Data and Structure Refinement for 8a stal Data and Structure Refinement for 8a ' stal Data and Structure Refinement for 8c	-gin, <i>K</i> ₀ ; lated ¹³ C 24 21 21
Table 6.5: Aver96% conversionKIE using 4-CFTable 6.4: CrysTable 6.5: CrysTable 6.6: CrysTable 6.7: CrysTable 6.7: Crys	rage $^{\circ}$ C Integration of the Product 6] at High Conversion (VII a), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu $^{\circ}_{3}$ -C ₆ H ₄ OH as the ligand stal Data and Structure Refinement for 8a stal Data and Structure Refinement for 8a ' stal Data and Structure Refinement for 8c stal Data and Structure Refinement for 8c stal Data and Structure Refinement for 8c	rgin, <i>K</i> ₀ ; lated ¹³ C 2 ² 2 2 2
Table 6.3: Aver96% conversionKIE using 4-CFTable 6.4: CrysTable 6.5: CrysTable 6.6: CrysTable 6.7: CrysTable 6.7: CrysTable 6.8: CrysTable 6.8: Crys	rage "C Integration of the Product 6] at High Conversion (Vir n), at Low Conversion (<i>R</i> ; avg 18% conversion) and the Calcu 53-C ₆ H ₄ OH as the ligand stal Data and Structure Refinement for 8a stal Data and Structure Refinement for 8a ' stal Data and Structure Refinement for 8c stal Data and Structure Refinement for 8e stal Data and Structure Refinement for 10 stal Data and Structure Refinement for 11	-gin, <i>K</i> ₀ ; lated ¹³ C 2 ² 2 2 2 2

Table 6.11. Catalyst Survey for the Coupling Reaction of 4-Methoxybenzaldehyde with 1-Butanol.	290
Table 6.12. Calculated Average ¹³ C KIE from Virgin (R_0) and Recovered (R) Samples of 2k .	.296
Table 6.13: Crystal Data and Structure Refinement for 9.	320
Table 6.14: Crystal Data and Structure Refinement for 3e.	321
Table 6.15: Crystal Data and Structure Refinement for 3f.	322
Table 6.16: Crystal Data and Structure Refinement for 11	323
Table 6.17: Crystal Data and Structure Refinement for 10	324

LIST OF FIGURES

Figure 1.1: Combination of D-amino acid Oxidase and L-glutamate Dehydrogenase (Glu- DH)
Figure 1.2: Balancing the Supply of Nitrogen for Urea Cycle when Aspartate in Excess.
Figure 2.1. 2-Aryloxy-1-Arylethanols Approximate the Functionality in β -[O]-4'-Glycerolaryl Ethers
Figure 2.2: Selective Cleavage of Aryl-Oxygen Bond in Different Conditions
Figure 2.3: Some Natural Products and Drugs Containing Ether Bond
Figure 2.4. Natural Products Pynthesed by Ullman Coupling
Figure 2.5: Natural Productd from Wacker-type Oxidaton 67
Figure 3.1. ¹ H and ² H NMR Spectra of the Reaction Mixture of 3-Methoxybenzyl Amine with 2-Propanol- d_8 at 80 °C
Figure 3.2. Hammett Plot of $p-X-C_6H_4CH_2NH_2$ (X = OCH ₃ , CH ₃ , H, Cl, Br) with 1- Phenyl-1-ethanol
Figure 3.3. ¹ H and ² H NMR Spectra of 14m-d Obtained from the Reaction of Acetophenone-d ₈ with (S)-Leucine
Figure 3.4. Hammett Plot of $p-X-C_6H_4COCH_3$ (X = NH ₂ , CH ₃ , H, Cl, Br, CN) with (S)- Leucine
Figure 3.5: Transition state of alkyl-ruthenium enolate complex
Figure 4.1: Some Biologically Active Ketone Compounds 122

.

Figure 4.2. Hammett Plot of 4-Methoxyacetophenone with p-X-C ₆ H ₄ OH (X = ^{t}Bu , Cl, CF ₃ , Et, F, H, Me, OMe)135
Figure 4.3: Deuterium Isotope Effect Study for the Reaction of 4-Methoxyacetophenone with H_2/D_2 with 4-OMe-C ₆ H ₄ OH as the Ligand
Figure 4.4: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone with H_2/D_2 with 4-Ethylphenol as the Ligand
Figure 4.5: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone with H_2/D_2 with 4-CF ₃ -C ₆ H ₄ OH as the Ligand
Figure 4.6. Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone with H_2/D_2 with 4-Cl-C ₆ H ₄ OH as the Ligand
Figure 4.7. Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone with H_2/D_2 with 4-F-C ₆ H ₄ OH as the Ligand
Figure 4.8: ¹ H and ² H NMR Spectra for the Hydrogenolysis of 4-Methoxyacetophenone with D_2 Catalyzed by $4/4$ -CF ₃ C ₆ H ₄ OH
Figure 4.9: ¹ H and ² H NMR Spectra for the Hydrogenolysis of 1-(4-Methoxyphenyl)ethanol with D_2 Catalyzed by 4/4-CF ₃ C ₆ H ₄ OH
Figure 4.10: ¹ H and ² H NMR Spectra for the Hydrogenolysis of 4-Methoxyacetophenone with D_2 Catalyzed by 4/4-OMeC ₆ H ₄ OH 147
Figure 4.11: ¹ H and ² H NMR Spectra for the Hydrogenolysis of 1-(4-Methoxyphenyl)ethanol with D_2 Catalyzed by 4/4-OMeC ₆ H ₄ OH148
Figure 4.12: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B) Initial Rate of the Formation 1-Ethyl-4-methoxybenzene vs at Different Catalyst Concentrations of $4/\text{HBF}_4\cdot\text{OEt}_2/4-\text{OMe-C}_6\text{H}_4\text{OH}$ (8a)
Figure 4.13: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B) Initial Rate of the Formation 1-Ethyl-4-methoxybenzene vs at Different Catalyst Concentrations of $4/\text{HBF}_4\cdot\text{OEt}_2/4\text{-CF}_3\text{-C}_6\text{H}_4\text{OH}$ (8f)
, v

.

ix

х

Figure 4.25: ORTEP Diagram of Complex 14 (H atoms and Solvent Molecules Removed for Clarity) 163
Figure 4.26: The Plot of pH vs Log([A ⁻]/[HA])164
Figure 4.27: Acidic and Hydridic Nature of Ruthenium Phenol Bifunctional Catalyst 164
Figure 5.1: X-ray Crystal Structure of (A) 3d (B) 3e (C) 3f.
Figure 5.2: Hammett Plot from the Reaction of $p-X-C_6H_4CHO$ (X = OMe, Me, H, F, Cl) with 2-Butanol
Figure 5.3: First Order Plot of the 4-Methoxybenzaldehyde (S) with 2-Butanol in H ₂ O (circle) and in D ₂ O (triangle)
Figure 5.4: First Order Plot of the 4-Methoxybenzaldehyde with 2-Propanol (triangle) and in 2-Propanol-d ₁ (circle)
Figure 5.5: Transition State of Ruthenium Alkoxy Species
Figure 5.6: ¹ H and ² H NMR Spectra of the Product 2f Isolated from the Reaction of 4- Methoxybenzaldehyde with 1-Butanol in D ₂ O
Figure 5.7: ¹ H and ² H NMR Spectra of the Product 6-[D] Isolated from the Reaction of 4- Methoxybenzaldehyde with 2-propanol- d_8 in H ₂ O 192
Figure 5.8: ¹ H and ² H NMR Spectra of the Reaction Mixture of 4-methoxybenzaldehyde- d ₁ with H ₂ O at 110 °C 193
Figure 5.9: ¹ H NMR Spectra of the Reaction Mixture of iPrOH with D ₂ O at 110 °C. 193
Figure 5.10: ¹ H NMR Spectra of the Reaction of 1 with 1-Butanol 197
Figure 5.11: ¹ H NMR Spectra of the Reaction of 5 with H ₂ O 197
Figure 5.12: ORTEP Diagram of Comlex 9 (H Atoms Reomoved for Clarity) 198

.

Figure 5.14: ORTEP Diagram of Comlex 11 (H Atoms Reomoved for Clarity) 200

Figure 6.1. Hammett Plot of 4-Methoxyacetophenone with p-X-C₆H₄OH (X = OMe, *t*-Bu, Me, Et, H, F, Cl, CF₃). 243

Figure 6.10: Initial Rate of the Formation 1-Ethyl-4-Methoxybenzene vs Catalyst Concentration of 4/HBF₄ OEt₂/4-CF₃-C₆H₄OH. 252

Figure 6.13: The Formation of 1-Ethyl-4-Methoxybenzene Vs Time at Different Concentration of 4-Methoxyacetophenone for the Catalyst 4/HBF₄·OEt₂/4-OMe-C₆H₄OH.

Figure 6.15: The Formation of 1-Ethyl-4-Methoxybenzene Vs Time at Different Concentration of 4-Methoxyacetophenone for the Catalyst 4/HBF₄·OEt₂/4-CF₃-C₆H₄OH.

Figure 6.16: Initial Rate of Formation 1-Ethyl-4-Methoxybenzene Vs Concentration of 4-Methoxyacetophenone for the Catalyst 4/HBF₄·OEt₂/4-CF₃-C₆H₄OH......256

Figure 6.17: The Formation of 1-Ethyl-4-Methoxybenzene Vs Time at Different Hydrogen Pressure for the Catalyst 4/HBF₄·OEt₂/4-OMe-C₆H₄OH......257

Figure 6.21: The Formation of 1-Ethyl-4-Methoxybenzene vs Time at different hydrogen pressure for the catalyst 4/HBF₄ OEt₂/4-CF₃-C₆H₄OH. 259

Figure 6.23: X-ray Structure of Complex 8a'	
Figure 6.24. Molecular Structure of 8c.	
Figure 6.25. Molecular Structure of 8e	

Figure 6.26. Molecular Structure of 10	65
Figure 6.27. Molecular Structure of 11	66
Figure 6.28: X-ray structure of complex 14	66
Figure 6.29: Hammett Plot from the Reaction of p -X-C ₆ H ₄ CHO (X = OMe, Me, H, F, C with 2-Butanol	Cl) 92
Figure 6.30: First Order Plot of the 4-Methoxybenzaldehyde with 2-Butanol in H ₂ (triangle) and in D_2O (circle).	2O 93
Figure 6.31. First Order Plot of the 4-Methoxybenzaldehyde with 2-Propanol (triangle and in 2-Propanol- d_1 (circle)	le) 94
Figure 6.32: ¹ H and ² H NMR Spectra of the Product 2f Isolated from the Reaction of Methoxybenzaldehyde with 1-Butanol in D_2O	`4- .95
Figure 6.33. ¹ H NMR Spectra of the Reaction of 5 with 1-Butanol. Indicate Time and Ter For Each Spectrum	mp 97
Figure 6.34: X-ray Crystal Structure of 3d	01
Figure 6.35: X-ray Crystal Structure of 3e	01
Figure 6.36: X-ray Crystal Structure of 3f	01

xiv

Figure 6.37: Molecular Structure of 9.	302
Figure 6.38: X-ray structure of complex 10 (H atoms removed for clarity)	302
Figure 6.39: X-ray structure of complex 11	303

-

. .

ι, .

LIST OF SCHEMES

Scheme 1.1: Microscopic Reversibility of C-C Bond Activation
Scheme 1.2: C-C Bond Activation of Propane by Cp*Rh(PMe ₃)(H) ₂
Scheme 1.3: C-C Bond Activation of Pincer-Type Ligands
Scheme 1.4: C-C Bond Activation of Propane by (PPh ₃) ₃ RhCl
Scheme 1.5: Rh Catalyzed C-C Activation of Cyclobutanone
Scheme 1.6: Proposed Mechanism of Pd Catalyzed Arylation of <i>tert</i> -cyclobutanol6
Scheme 1.7: Ruthenium-Catalyzed Deallylation of Unstrained Homoallylic Alcohol 7
Scheme 1.8: Proposed Mechanism for the α-C-C Bond Cleavage of 8-Quinolinyl Alkyl Ketone
Scheme 1.9: Proposed Mechanism Decarbonylative C–C Bond Activation of Oxazolidine.
Scheme 1.10: Proposed Mechanism for Chelate Assisted C-C Bond Activation Catalyzed by (PPh) ₃ RhCl
Scheme 1.11: Proposed Mechanism for C-C Bond Cleavage of Secondary Benzyl Alcohol.
Scheme 1.12: Postulated Mechanism for the Ni-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanone
Scheme 1.13: Proposed Mechanism for Denitrogenation of N-heterocyle by Ti Catalyst.

Scheme 1.14: Allylic Isomerization Promoted by a Combination of Palladia Acid	um and Protic
Scheme 1.15: Plausible Reaction Mechanism Pd Catalyzed Allylic Alkylatic	on20
Scheme 1.16: Proposed Mechanism for Rh/Cu Catalyzed Anulation of B Alkyne.	enzimide and 24
Scheme 1.17: Proposed Repair Mechanism for AlkB-family Proteins	27
Scheme 1.18: Mechanism of Aspartate Deamination by Lyases	
Scheme 2.1: Zinc Promoted Reduction of Ketone and Ozonolysis of Alkene	
Scheme 2.2: Reduction of Carboxylic Acid into Alkane	
Scheme 2.3: Mechanism of Ga(OTf) ₃ Catalyzed Reduction of Ketone by Si	ilane 37
Scheme 2.4: Proposed Mechanism for Ru Catalyzed Hydrogenolys	is of Esters
Scheme 2.5: Proposed the Reaction Mechanism for the Zinc Catalyzed Ami	de 42
Scheme 2.6: C-O Cleavage of Aryl-OMe Ether by Rh	
Scheme 2.7: Proposed Mechanism for the Hydrogenolysis of Aryl Ether Cat Catalyst.	talyzed By Ru 47
Scheme 2.8: Oxidation of Phenolic Ligand Model Compound with Vanad	ium Catalysts 50
Scheme 2.9: Tentative Mechanism for the Rhodium-Catalyzed Rearran (Aryloxy) Benzaldehydes to 2-Hydroxybenzophenones	gement of 2-
Scheme 2.10: Mechanism of Etherification of Cholesterol, ROH= Cholester	rol56

x

Scheme 2.11: Mechanism of Rhenium (I) Catalytic Etherification Cycle
Scheme 2.12: Mechanism of In (III) Catalyzed Deoxygenation of Esters
Scheme 2.13: Proposed Mechanism of Synthesis of Unsymmetrical Ether by Iridium Catalyst
Scheme 2.14: Working Mechanistic Hypothesis for Unsymmetrical Ether Formation 66
Scheme 2.15: Proposed Mechanism for Ir Catalyzed Hydroetherification of Phenol and Alkene
Scheme 2.17: Proposed Simplified Catalytic Cycle with TESOTf as Active Catalyst74
Scheme 2.18: Synthetic Raoute for the Synthesis of (-)-Exiguolide
Scheme 2.19: Proposed Mechanism for the Zn Catalyzed Etherification76
Scheme 3.1: Pyridoxal Derivatives and Cu ²⁺ ion Catalyzed Oxidative Deamination of Amino Acids
Scheme 3.2: Synthesis of Cationic Ruthenium Hydride Complex 5
Scheme 3.3: Generation of Cationic Ru-Alkenyl Species 9 100
Scheme 3.4: Proposed Mechanism for Deaminative Coupling of Amines with Alcohol.
Scheme 3.5: Proposed Mechanism for the Decarboxylative and Deaminative Coupling of Amino Acids with Ketone
Scheme 4.1: Electronic Effect of Ru-H (8) Catalyzed H ₂ Activation

.

Scheme 4.2: ¹³ C KIE data for the 6-Methoxy-1,2,3,4-tetrahydronaphthalene (A) for the in- situ Generated Catalyst 8a (B) for the in-situ Generated Catalyst 8f
Scheme 4.3: Deuterium Incorporation pattern of 1-Ethyl-4-methoxybenzene Product when (a) 4-Methoxyacetophenone and 4-(Trifluoromethyl)phenol (b) 1-(4-Methoxyphenyl)ethanol and 4-(Trifluoromethyl)phenol (c) 4-Methoxyacetophenone and 4-Methoxyphenol (d) 1-(4-Methoxyphenyl)ethanol and 4-Methoxyphenol is used145
Scheme 4.4: Keto Enol Tautomerization and Formation of Ru-enolate Complex 148
Scheme 4.5: Synthetic Routes for the Complex 9
Scheme 4.6: Possible Intermediates from the Reaction of Complex 10 with H ₂ 160
Scheme 4.7: Synthetic Route for the Complex 14 162
Scheme 4.8: Catalytic Cycle of Noyori Catalyst via a Concerted Six-membered Transition State
Scheme 4.9: Outer-sphere Mechanism for the Hydrogenation of Ketones to Alcohols
Scheme 4.10: Proposed Mechanism of Ruthenium Catalyzed Hydrogenolysis of 1- Phenethanol to Ethyl Benzene for the Catalyst 8a ($X = OMe$)
Scheme 4.11: Proposed Mechanism of Ruthenium Catalyzed Hydrogenolysis of 1- Phenethanol to Ethyl Benzene for the Catalyst $8f(X = CF_3)$
Scheme 5.1: Synthesis of Complex 7, 8 and 9
Scheme 5.2: Proposed Mechanism for the Catalytic Reductive Coupling of Carbonyl Compound with Alcohols

`