Index no:....

A Comano - comano

<u>UNIVERSITY OF RUHUNÅ – FACULTY OF ALLIED HEALTH SCIENCES</u> <u>DEPARTMENT OF PHARMACY</u> <u>FIRST BPHARM PART I EXAMINATION – NOVEMBER/DECEMBER 2019</u> <u>PH 1123 BIOCHEMISTRY I (SEQ)</u>

TIME: TWO HOURS

INSTRUCTIONS

- There are four questions in A, B and C parts of the SEQ paper.
- Answer **each** part in a separate booklet.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.
- Use illustrations where necessary.

PART A

1.	Write short notes on following.		
	1.1. Serine proteases	(25 marks)	
	1.2. Integrin	(25 marks)	
	1.3. Passive transport	(25 marks)	1
	1.4. Cell division of eukaryotes	(25 marks)	
2.			
	2.1. Explain briefly how glycolysis is regulated in the body.	(20 marks)	1
	2.2. Briefly explain the electron transport chain.	(30 marks))
	2.3. State two by-products of the hexose monophosphate pathway and their importance.		
		(20 marks))
	2.4. Explain the importance of ascorbic acid as supplementary to human	ns. (<i>30 marks</i>))

PART B

3. Answer all parts.

- 3.1. What is meant by an exergonic reaction? Draw an energy diagram for an exergonic or spontaneous reaction. (20 marks)
- 3.2. Glucose-6-phosphate is formed from glucose in an ATP utilizing reaction. Write the overall reaction and calculate the ΔG^0 of it using the following information.

Glucose + $P_i \leftrightarrow$ Glucose-6-P + H2O $\Delta G^o = +14 \text{ kJ/mol}$ ATP + H2O \leftrightarrow ADP + Pi $\Delta G^o = -31 \text{ kJ/mol}$

Giving reasons indicate whether the overall reaction is spontaneous or not. (30 marks)

3.3 Define the following terms pertaining to enzyme catalysis:

3.3.1 Coenzyme, apoenzyme and holoenzyme. (15 marks)

3.3.2 Michaelis constant and turn over number (10 marks)

- 3.4 In the presence of alcohol dehydrogenase, the rate of reduction of acetaldehyde to ethanol increases with the concentration of acetaldehyde. Eventually the rate of the reaction reaches a maximum, where further increases in the concentration of acetaldehyde have no effect.
 - 3.4.1 Sketch the initial velocity (v₀) versus substrate concentration [S] graph to show this observation. Briefly explain why. (15 marks)
 - 3.4.2 Explain mathematically how a value for Km can be estimated from the v0 versus[S] graph.(10 marks)

04. Answer all parts.

4.1. Draw the general structure of a fat (using R-groups for the fatty acid) and describe how the β - oxidation of;

4.1.1. even chain fatty acids

(10 marks)

- 4.1.2. odd chain fatty acids differ in terms of products formed. (10 marks)
- 4.2. There are four steps in the β -oxidation pathway of a fatty acids. Give the sequence of these four reactions. (15 marks)
- 4.3. Calculate the net energy yield (number of ATP) from one molecule of palmitate (16 carbons) is completely oxidized to CO₂ and H₂O by the β-oxidation sequence and the Kerb's cycle.

PART C

4.4.

4.4.1. What is meant by "malabsorption"? (10 marks)

4.4.2. Briefly explain **four** factors that may lead to malabsorption. (40 marks)