University of Ruhuna - Faculty of Medicine

 Allied Health Science Degree Programme

 Allied Health Science Degree Programme
 First B. Pharm. Part I Examination - June 2015

PH1152 : Mathematics (SEQ)

Time: Two (02) Hours

Each question carries equal marks

Instructions:

- Answer all questions.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.

1. a) Let z be a complex number of the form $x+i y$, where x, y are real numbers and i is the imaginary unit.
(i) Write down the complex conjugate z^{*} of z.
(ii) Show that $z^{*} z$ and $z^{*}+z$ are always real.

Determine the value of $\frac{3+5 i}{3-2 i}$.
b) Expand $\left(x^{2}+i y^{2}\right)^{4}$ using the binomial theorem. Here i is the imaginary unit.
c) The number of bacteria N present in a sample is given by $N=800 e^{0.2 t}$, where time t is in seconds. Find
(i) the initial number of bacteria.
(ii) the time when the number of bacteria reaches 10^{4}.

You may use that $\ln 12.5=2.52$.
d) Using the formulae for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$, prove that

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
$$

Hence, deduce that

$$
\tan \left(\theta+\frac{\pi}{6}\right)=\frac{1+\sqrt{3} \tan \theta}{\sqrt{3}-\tan \theta}
$$

2. a) Find the following limits:
(i) $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$,
(ii) $\lim _{x \rightarrow 0} \frac{(a+x)^{3}-a^{3}}{x}$,
(iii) $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}$.
b) Differentiate the function $y=3 x^{2}+2 x$ with respect to x from the first principles.
c) Differentiate the following functions with respect to x :
(i) $\frac{2}{9} \tan \frac{3 x}{2}-\frac{3}{4} \cos 8 x$,
(ii) $e^{6 x} \ln 6 x$,
(iii) $\frac{\sin 2 x}{\sin 5 x}$.
d) A $\stackrel{\mu}{c}{ }_{\Lambda}^{\mu}$ ve has the equation $y=2 x^{3}-7 x^{2}+4 x+4$. Find the turning points of the curve and determine their nature using the second derivative $\frac{d^{2} y}{d x^{2}}$.
3. a) A three variable function is given by

$$
z(a, b, c)=a^{4} b^{2} c+2 a b+3 c+7
$$

(i) Find the partial derivatives

$$
\frac{\partial z}{\partial a}, \frac{\partial z}{\partial b}, \text { and } \frac{\partial z}{\partial c} .
$$

(ii) Show that the total differential $d z$ of z at the point $(1,3,5)$ is given by

$$
d z=186 d a+32 d b+12 d c .
$$

b) Use integration by parts to evaluate

$$
\int x \cos x d x
$$

Hence, show that

$$
\int x^{2} \sin x d x=-x^{2} \cos x+2 x \sin x+2 \cos x+C
$$

where C is an arbitrary constant.
(Hint : You may use that $\int u d v=u v-\int v d u$).
4. a) Show that

$$
\int \frac{1}{(x-1)(x+2)} d x=\frac{1}{3} \ln \frac{x-1}{x+2}+C
$$

where C is an arbitrary constant.
b) (i) Evaluate

$$
\int_{0}^{2 \pi} \cos \theta d \theta
$$

(ii) If

$$
\int_{0}^{2 \pi} A(\sin \theta+\cos \theta) d \theta=1
$$

find A.
c) The gradient of a curve of the form $y=f(x)$ is given by

$$
\frac{d y}{d x}=2(1-x) .
$$

If $(2,0)$ is a point on the curve, find the equation of the curve.

