University of Ruhuna - Faculty of Medicine

Allied Health Science Degree Programme
First B. Pharm. Part I Examination - August 2017

PH1152 : Mathematics (SEQ)

Time: Two (02) Hours

Each question carries equal marks

Instructions:

- Answer all questions.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.

1. a) Find the following limits:
(i) $\lim _{x \rightarrow-4} \frac{16-x^{2}}{4+x}$,
(ii) $\lim _{x \rightarrow 6} \frac{x^{2}-6 x}{x^{2}-7 x+6}$,
(iii) $\lim _{x \rightarrow \infty} \frac{-6 x^{4}+x^{2}+1}{2 x^{4}-x}$.
b) Consider the function $f(x)=2 x^{2}$. Show that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=4 x$.
c) Suppose a bacterial culture grows in such a way that at time t there are t^{3} bacteria. Let $y=t^{3}$. Find the rate of growth at time t, that is $\frac{d y}{d t}$, using first principles. What is the rate of growth at time $t=10^{3}$ seconds?
d) Differentiate the following functions with respect to x :
(i) $f(x)=\ln \left(x^{2}+x e^{x}\right)$,
(ii) $h(x)=\tan x(\sin x-5)$,
(iii) $g(x)=\frac{x^{2}-1}{x^{2}+1}$.
2. a) Consider the function $y=\frac{1}{4} x^{4}-x^{3}+x^{2}$.
(i) Find the turning points of this function.
(ii) Identify the above turning points as maxima or minima using the second derivative $\frac{d^{2} y}{d x^{2}}$.
b) A two variable function is given by

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}} .
$$

(i) Find the partial derivatives $\left(\frac{\partial f}{\partial x}\right)_{y}$, and $\left(\frac{\partial f}{\partial y}\right)_{x}$.
(ii) Show that the total differential $d f$ of f at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$ is given by

$$
d f=-d x-\frac{1}{2} d y
$$

(iii) Verify that

$$
\left[\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right]_{x}=\left[\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right]_{y}
$$

3. a) Show that the function $f(x, y)=\sqrt{x y}$ is homogeneous and satisfies the Euler's theorem.
b) Using the substitution $u=1-4 x^{2}$, evaluate

$$
\int \frac{x}{\sqrt{1-4 x^{2}}} d x
$$

c) Use integration by parts formula to show that

$$
\int \ln (x+1) d x=x \ln (x+1)-x+\ln (x+1)+C
$$

where C is an arbitrary constant.
4. a) Find partial fractions of $\frac{2}{s^{2}-1}$.

Writing $\frac{s^{2}+1}{s^{2}-1}$ as $1+\frac{2}{s^{2}-1}$, evaluate $\int_{2}^{3} \frac{s^{2}+1}{s^{2}-1} d s$.
b) Show, by the method of separation of variables, that the solution of the differential equation

$$
\frac{d y}{d x}=x e^{2 y}
$$

can be written as

$$
y=-\frac{1}{2} \ln \left(-x^{2}+C\right)
$$

where C is an arbitrary constant.
Given the initial condition $y(0)=-1$, find the constant C and write down the solution.
c) Test the differential equation

$$
\left(e^{4 x}+2 x y^{2}\right) d x+\left(\cos y+2 x^{2} y\right) d y=0
$$

for exactness. If it is exact, then find its solution.

