\qquad

DEPARTMENT OF PHARMACY

FIRST BPHARM PART I EXAMINATION - NOVEMBER 2020

PH1152 : MATHEMATICS - SEQ

TIME: TWO HOURS

INSTRUCTIONS

- There are four questions in this paper.
- Answer all questions.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.

1. a) Find the following limits:
(i) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-3 x}$
(ii) $\lim _{x \rightarrow 0} \frac{(x+5)^{3}-125}{x}$
(iii) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
b) Differentiate the function $y=-x^{2}+3 x$ with respect to x using the first principles.
c) The Maxwell Boltzmann Distribution is a probability distribution, which has the form $f(v)=\lambda \nu^{2} e^{-\mu \nu^{2}}$; where λ and μ are constants, of finding particles at certain speed v in three dimensional space.
Show that the rate of change of $f(v)$ with respect to v is $2 \lambda \nu e^{-\mu \nu^{2}}\left(1-\mu \nu^{2}\right)$.
d) Compute the first derivative of the function $y=\sqrt{u^{2}+2}$, where $u=\cot x$, with respect to x.
2. a) Find the equation of the tangent line to the curve $y=(x+2)(2 x+1)^{2}$ at $x=-1$.
b) The cubic curve $y=a x^{3}+b x^{2}+c x+d$, where a, b, c and d are constants, has a stationary point at $(1,0)$ and touches the line $y=-9 x+5$ at $(0,5)$.
(i) Show that $a=1, b=3, c=-9$ and $d=5$.
(ii) Find the other stationary point of this function.
(iii) Classify the above stationary points as maxima or minima using the second derivative $\frac{d^{2} y}{d x^{2}}$.
3. (a) Let $f(x, y)=\frac{y^{2}}{x^{2}} \ln x$. Verify that

$$
\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x}
$$

(b) Let $g(x, y)=e^{2 x^{3}+3 y^{3}}$.
(i) Find the partial derivatives $\frac{\partial g(x, y)}{\partial x}$ and $\frac{\partial g(x, y)}{\partial y}$.
(ii) Find the total differential of g at the point $(1,1)$.
(c) Show that the function $f(x, y)=9 x^{3} y+8 x^{2} y^{2}-6 x y^{3}$ is homogeneous of degree 4 and satisfies the Euler's theorem.
4. (a) Using the method of integration by parts, show that

$$
\int x \sin x d x=-x \cos x+\sin x+C
$$

where C is the constant of integration.
Use the method of integration by parts and the above result to show that

$$
\int_{0}^{2 \pi} x^{2} \cos x d x=4 \pi
$$

(b) Find the constants A, B and C such that

$$
\frac{1}{x(3 x-1)^{2}}=\frac{A}{x}+\frac{B}{3 x-1}+\frac{C}{(3 x-1)^{2}} .
$$

Hence, evaluate

$$
\int \frac{1}{x(3 x-1)^{2}} d x
$$

(c) Test the differential equation

$$
\left(2 x y+y^{3} \cos x\right) d x+\left(x^{2}+3 y^{2} \sin x\right) d y=0
$$

for exactness. If it is exact, then find its solution.

