UNIVERSITY OF RUHUNA

BACHELOR OF SCIENCE IN FISHERIES AND MARINE SCIENCES DEGREE

Level II Semester II Examination

Dec/Jan 2015/2016

FAQ 2223 Fish Population Dynamics

Time: 02 hours

Answer Four (04) questions selecting at least one (01) from each of the Parts

Part I

- 01) Describe the stock assessment methodologies applicable to tropical environment.

 (50 marks)
- 02) Write short accounts on <u>any three</u> of the following (50 marks)
 - (a) Unit stock
 - (b) Anabolism and catabolism
 - (c) Lee's phenomenon
 - (d) Isometric growth and allometric growth
 - (e) Holistic models and analytical models
- (50 marks) "Analysis of length-frequency data is suitable for estimating growth parameters of a tropical fish species". Justify.
- 04) Write a brief essay on
 - (a) Recruitment of fish (25 marks)
 - (b) Gear selection ogive (25 marks)
- 05) (a) Summarize the major steps in estimating gillnet selectivity. (25 marks)
 - (b) Discuss the advantages and disadvantages of hard part analysis for growth determination. (25 marks)

Part II

- 06) (a) What is meant by semi-quantitative methods in fish stock assessment? (12.5 marks)
 - (b) What are the situations where semi quantitative methods are useful for assessing fish stocks? (12.5 marks)
 - (c) Briefly describe the importance of "morpho-edaphic index" for the management of inland fisheries. (25 marks)
- 07) From a purse seine fishery for *Elagatis bipinnulata*, the following information was collected in six years.

Year	Mean length (cm)	Fishing effort (x 100 boat-days per year)
1994	50	300
1996	48.3	350
1998	46	435
2000	45.8	460
2002	44.9	475
2005	44.3	500

The growth of *Elagatis bipinnulata* stock is described by the following equation.

$$L_t = 97.5 (1 - \exp(-0.6 (t-t_0)))$$

where L_{∞} is the asymptotic fork length in cm; and Growth constant (K) is on annual basis. Smallest length of fish under full exploitation (L') = 30 cm

- (i) Estimate Total mortality (Z) of fish stock in years 1994, 1996, 1998, 2000, 2002 and 2005. (20 marks)
- (ii) Estimate natural mortality of fish stock.

(15 marks)

(iii) Assuming natural mortality remained constant over the period of investigation, examine trends in the level of exploitation over the period 1996-2003. Give reasons for your judgment.

(08 marks)

(iv) State the assumptions behind this analysis and their validity.

(07 marks)