UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 7 Examination in Engineering: March 2021
Module Name: Object Oriented Design Patterns and
Principles
[Three Hours]
[Answer all questions, each question carries 10 marks]

Module Number: EE7205

Q1 a) List down 2 benefits of complying with SOLID principles when writing an object-
oriented code.
[2.0 Marks]

b) What is Liskov Substitution in SOLID principles?
[3.0 Marks]

¢) A student has identified the following classes and interfaces while refactoring the
SalaryCalculator class (Listing Q1.1) to comply with SOLID principles.

e Employee - interface

e ContractEmployee - class

* PermanentEmployee - class
* EmployeeFactory - class

Write the code for the ContractEmployee and EmployeeFactory classes.

public class SalaryCalculator {
public double getSalary(double basicSalary, String employmentType) {
if ("Contract".equals (employmentType)) {
return basicSalary - calcTax(basicSalary, employmentType);

}

return basicSalary - calcTax(basicSalary, employmentType) -
(basicSalary * 8 / 100);

}
private double calcTax (double basicSalary, String employmentType) {

if ("Contract".equals (employmentType)) {
return basicSalary * 10 / 100;

}
return (basicSalary - 250000) * 6 / 100;
Listing Q1.1
[5.0 Marks]

Page 1 of 3

Q2 a)

b)

Q3 a).
b)
Q4 a)
b)
0

A developer has decided to follow the “interpreter” design pattern to develop a
program to check whether a person is male and older than 18 years. Explain the
interpreter pattern and its benefits using this scenario.

[4.0 Marks]

Implement one terminal and one non-terminal expression identified in the scenario
mentioned in the question Q2 (a) using java.
[6.0 Marks]

Does high cohesion decrease coupling? - justify your answer.
[3.0 Marks]

Answer the (i) and (ii) based on the code in Listing Q3.1.

class LeaderSelector({
private SelectionStrategy strategy = new RandomSelectionStrategy():

public String select(String[] names) ({
return "Leader " + strategy.select (names);
}
}

interface SelectionStrategy({
String select(String[] names);

}

class RandomSelectionStrategy implements SelectionStrategy({
@0verride
public String select(String[] names) ({

int index = new Random() .nextInt (names.length);
return names [index]; '

Listing Q3.1

i) What is the SOLID principle violated in the above code?

[2.0 Marks]
ii) Solve the above mentioned issue by refactoring the code.

[5.0 Marks]
Briefly explain the benefits of the observer pattern.

[2.0 Marks]

Explain the difference between the observer pattern and the mediator pattern.

[2.0 Marks]

class Aggregator
void showAggregates (int[] numbers) {
// implementation

}

Page 2 of 3

Q5 a)

b)

You are supposed to implement the above showAggregates(int[] numbers) method
which will show the Total and Average of the given numbers in the command line.
There is a high chance of adding many other operations like Mean, median and
mode like aggregates in the future.

Implement the method using a suitable design pattern.
[6.0 Marks]

What is the importance of mocking in unit testing?
[2.0 Marks]

What is the benefit of using “hamcrest” library for unit tests written in Java?

[2.0 Marks]

Implement two unit tests for the validate(String word) method in the code given
below.

interface SpellChecker(
boolean check(String word) ;

}

public class Input{]
UNIVERSiTY

private SpellChecker checker; [

OF RUHUNA

public Input (SpellChecker checker) { 1N
this.checker = checker; “

} {

FACULTY ¢ Y INEERI

public boolean validate (String word) { : USINEERING

if (word.equals("")) { WLE

return false;

}

return checker.check (word) ;
}

}
[4.0 Marks]

Which code line in the following code makes unit testing harder and explain why?

public class Calculator{

public void add(int x, int y) {
int output = x + y;
System.out.println (output) ;

[2.0 Marks]

Page 3 of 3

