UNIVERSITY OF RUHUNA

Bachelor of Science in Marine and Freshwater Sciences Degree

Bachelor of Science in Fisheries and Marine Sciences Degree

Examination-July/August 2017

Level I, Semester I

CHM 1122: Analytical Chemistry I

Time: 1 ½ hrs

Answer only three (03) questions

- (01) Answer all parts
- (a) Define briefly each of the following terms.
 - (i) Buffer solution
 - (ii) Buffer capacity
 - (iii) Primary standard substance

(15 marks)

- (b) Consider the ethanoic acid (CH₃COOH) / sodium ethanoate (CH₃COO Na⁺) buffer system.
 - (i) Calculate the pH of a buffer solution where [CH₃COOH] is 0.1 mol dm⁻³ and [CH₃COO] is 0.2 mol dm⁻³. The K_a of the weak acid CH₃COOH is 1.8 x 10⁻⁵ mol dm⁻³.
 - (ii) If you add 2.00 mL of 0.10 M HCl to 100 mL of the above buffer solution, what will be the new pH?
 - (iii) If you add 2.00 mL of 0.10 M HCl to 100 mL of distilled water calculate pH of the resultant solution.

(55 marks)

- (c) Sketch the titration curves for the following acid-base mixtures. Clearly label the axes in your drawing. (Assume base is always in the titration flask)
 - (i) Strong acid-Strong base
 - (ii) Strong acid- weak base
 - (iii) Titration of a Na₂CO₃ solution with standard HCl

(30 marks)

- (02) (a) Briefly explain the following terms pertaining to the complexometric titrations.
 - (i) Auxiliary complexing agents
 - (ii) Masking and demasking

(20 marks)

(b) In the determination of hardness of water and wastewater small amount of Mg-EDTA complex is added to the sample. Explain chemistry pertaining to this statement.

(20 marks)

- (c) A student titrated 50.00 mL of Ca²⁺ ion solution buffered to pH 10 with 0.0600 mol dm⁻³ EDTA solution in the presence of calmagite indicator. He observed a sharp colour change from blue to wine red when 25.00 mL 0.0600 mol dm⁻³ EDTA solution was reacted with the Ca²⁺ solution.
 - (i) What is the Ca²⁺ ion concentration of the solution?
 - (ii) Calculate the conditional formation constant K_f for the CaY²-complex at pH =10 Note: For Ca²+ log K_f = 10.65, α_{Y4-} = 0.30for EDTA at pH = 10
 - (iii) Calculate the concentration of CaY2- at the equivalence point
 - (iv) Calculate the pCa at the equivalence point. (Assume that the dissociation of CaY^{2-} at pH = 10 is very small)

(35 marks)

(d) A 25.00 mL aliquot of a solution containing Cu²⁺ and Fe³⁺ was titrated with 16.06 mL of 0.0508 M EDTA. A second 25.00 mL aliquot of the Cu²⁺/Fe³⁺ mixture was treated with NaF to form a stable iron-fluoride complex. This mixture was then titrated with 0.0508 M EDTA and the endpoint volume was found to be 5.43 mL. Calculate the molar concentrations of Cu²⁺ and Fe³⁺in the aliquot.

(25 marks)

- (03) (a) Explain the chemistry pertaining to the following statements
 - (i) Na₂CrO₄ can be used as an indicator in the determination of Cl⁻ ions by precipitation titration with AgNO₃
 - (ii) K₂Cr₂O₇is widely used in redox titrations.

(20 marks)

- (b) Sodium thiosulfate is used as a topical antifungal agent in medicine. Concentration of thiosulfate is determined by reacting it with KIO₃ and I₂. During this titration KI reacts with KIO₃ in acidic medium to yield I₂. Liberated I₂ then reacts with sodium thiosulfate solution. A student dissolved 0.1322 g of KIO₃ (FW 214 g/mol) in water adding large excess of KI and acidifying with H₂SO₄ acid. The liberated I₂ consumed 28.50 mL of the sodium thiosulfate solution at the end point.
 - (i) Write down balanced chemical equations for the reactions between,
 - (I) KIO₃ and KI in acidic medium
 - (II) I_2 and $S_2O_3^{2-}$
 - (ii) Calculate the concentration of sodium thiosulfate solution.
 - (iii) Explain how you would detect the end point of the above titration.
 - (iv) Discuss briefly the possible errors associated with the above titration and how you would minimize them.

(50 marks)

- (c) (i) State desired properties of a precipitate product in gravimetric analysis
 - (ii) What steps would you take to maximize crystal growth in gravimetric analysis?

(30 marks)

(04) Answer all parts

- (a) Briefly discuss the following terms.
 - (i) Systematic errors
 - (ii) Random errors
 - (iii) Relative Uncertainty

(25 marks)

(b) The Hg content of five different fish verities was measured with two different experimental methods and the results are shown in the following table.

Fish verity	Hg content (wt %)	Hg content (wt %)	
	by Method 1	by Method 2	
A	0.0134	0.0135	
В	0.0144	0.0156	
С	0.0126	0.0137	
D	0.0125	0.0137	
Е	0.0137	0.0136	
Standard	0.00079	0.00089	
deviation	A ,		

- (i) Calculate the average Hg content of the data measured by the two methods.
- (ii) Do the two analytical methods give results that are significantly different at the 95% confidence level?

(40 marks)

(c) A student titrated commercially available vinegar sample with 0.01 M NaOH to determine acetic acid percentage present in the sample and the results are shown in the following table.

Sample	Acetic acid	
	(w %)	
1	4.4	
2	4.6	
3	4.1	
4	5.2	

- (ii) Calculate the average, standard deviation and coefficient of variation.
- (iii) Identify any rejectable data point at the 95% confidence level.

(35 marks)

Note:

(i) For two sets of data consisting of n_1 and n_2 and measurements (with averages $\overline{X}1$ and $\overline{X}2$), tvalue is calculated with the formula

$$t_{\text{calculated}} = \frac{|\overline{x}_1 - \overline{x}_2|}{s_{\text{pooled}}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \qquad \text{S pooled} = \sqrt{\frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}}$$

 s_1 and s_2 are the standard deviations of the two sets of data with n_1 and n_2 measurements.

t calculated is compared with for $n_1 + n_2 - 2$ degrees of freedom.

(ii) $Qcrit = (|Xq-Xn|/X_{highest}-X_{lowest})$ where Xq is the questionable result and Xn is the nearest neighbor of the questionable result

Values of t for Various Levels of Probability						
Degrees of Freedom	80%	90%	95%	99%	99.9%	
1	3.08	6.31	12.7	63.7	637	
2	1.89	2.92	4.30	9.92	31.6	
3	1.64	2.35	3.18	5.84	12.9	
4	1.53	2.13	2.78	4.60	8.61	
5	1.48	2.02	2.57	4.03	6.87	
6	1.44	1.94	2.45	3.71	5.96	
7	1.42	1.90	2.36	3.50	5.41	
8	1.40	1.86	2.31	3.36	5.04	
9	1.38	1.83	2.26	3.25	4.78	
10	1.37	1.81	2.23	3.17	4.59	
15	1.34	1.75	2.13	2.95	4.07	
20	1.32	1.73	2.09	2.84	3.85	
40	1.30	1.68	2.02	2.70	3.55	
60	1.30	1.67	2.00	2.62	3.46	
∞	1.28	1.64	1.96	2.58	3.29	

Rejection Quotient, Q, at Different Confidence Limits^a

No. of		Confidence Level	
Observations	Q_{90}	Q_{95}	Q_{99}
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
. 8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568
15	0.338	0.384	0.475
20	0.300	0.342	0.425
25	0.277	0.317	0.393
30	0.260	0.298	0.372