

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 5 Examination in Engineering: December 2020

Module Number: IS5306

Module Name: Numerical Methods

[Three hours]

[Answer all questions, each question carries 12 marks]

a) By considering one practical application, briefly explain the importance of the use of numerical methods for solving scientific or engineering problems

[2 Marks]

b) Clearly mentioning the assumptions, use Taylor's expansion to prove the Newton-Raphson formula

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)} .$$
 [2 Marks]

0 A loan of 'A' rupees is repaid by making n equal monthly payments of M rupees, starting a month after the loan is made. It can be shown that if the monthly interest rate is r, then

$$Ar = M \left(1 - \frac{1}{\left(1 + r \right)^n} \right).$$

Newton-Raphson method to find the monthly interest rate (%) with an accuracy of A car loan of Rs. 2,500,000.00 was repaid in 60 monthly payments of Rs. 50,000.00. Use

[8 Marks]

Q2. a) The Lagrangian interpolating polynomial of degree n, passes through n+1 data points $(x_0,y_0), (x_1,y_1),..., (x_{n-1},y_{n-1}), (x_n,y_n)$ is defined as $P_n(x) = \sum_{i=0}^n y_i L_i(x)$.

Where,
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$
 and n is a positive integer.

Show that
$$L_i(x_j) = 1$$
 when $i = j$ and $L_i(x_j) = 0$ when $i \neq j$.

[2 Marks]

b) i.) Write down the general form of the Newton's divided difference interpolation polynomial.

[1 Mark]

ii.) The velocity distribution of a fluid near a flat surface is given below.

4.00	3.45	2.75	1.80	0.75	Velocity, V(cm/s)
0.9	0.7	0.5	0.3	0.1	Distance, x (cm)

divided difference method of interpolation with 4^{th} order polynomial, obtain the Where x is the distance from the surface and V is the velocity. Using the Newton's velocity at x = 0.6 cm

[4 Marks]

c) Given the system of equations

$$x_1 + 5x_2 + 3x_3 = 28$$
$$3x_1 + 7x_2 + 13x_3 = 76$$
$$12x_1 + 3x_2 - 5x_3 = 1$$

Seidel method with an initial guess of $x_1^{(0)}=1$, $x_2^{(0)}=0$ and $x_3^{(0)}=1$. Solve the system by using Gauss

[5 Marks]

Q3. a) The first level of processing what we see involves detecting edges or positions of where a is a constant, derivatives of functions such as, coincide with boundaries of objects. To model the edges for different values of a_i transitions from dark to bright or bright to dark points in images. These points usually

$$f(x) = \begin{cases} 1 - e^{-\alpha x}, & x \ge 0 \\ e^{\alpha x} - 1, & x < 0 & \text{need to be found} \end{cases}$$

- i.) Calculate the functions 1^{st} derivative f'(x) at x = 0.1 for a = 0.15, by using the central difference approximation. Use a step size of h = 0.05.
- ii.) Calculate the functions 2^{nd} derivative f''(x) at x = 0.1 for a = 0.15, by using the central difference approximation. Use a step size of h = 0.05
- iii.) Calculate the absolute relative true errors (%).

[6 Marks]

b) i.) Use composite Simpson's rule with six subintervals to find an approximate value for the integral,

$$\int_{1}^{1.8} \ln(1+x^2) dx$$
, correct to four decimal places.

ii.) Use your answer in part (i) to deduce an approximate value for

$$\int_{1}^{1.8} \ln(e^{3x}\sqrt{1+x^2}) dx.$$
 [6 Marks]

- Q4. a) Briefly explain the following by giving an example for each.
- .) Ordinary differential equations (ODE)
- ii.) Partial differential equations (PDE)
- iii.) Initial value problem (IVP)
- iv.) Boundary value problem (BVP)

[3 Marks]

b) Solve, $\frac{dy}{dx} = x - y$, for x = 0.1 by using Picard's successive approximation method correct to four decimal places, given that y = 1 when x = 0.

[3 Marks]

c) A polluted lake has an initial concentration of a bacteria of 107 parts/m³, while the acceptable level is only 105 parts/m3. The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by,

$$\frac{dC}{dt} + 0.05Ct = 0, C(0) = 10^7$$

7 weeks. Take a step size of 3.5 weeks Using the Runge-Kutta 4th order method, find the concentration of the pollutant after

[6 Marks]

Q5. a) Classify the following equations as linear or non-linear, and state their order.

i.)
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 1$$

ii.)
$$\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3} - 6w \frac{\partial w}{\partial x} = 0$$

iii.)
$$2\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial t} + 3\frac{\partial^2 f}{\partial t^2} + 4\frac{\partial f}{\partial x} + \cos(2t) = 0$$

[3 Marks]

b) Classify the following partial differential equations as hyperbolic, parabolic, or elliptic.

i.)
$$8\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} - 3\frac{\partial^2 u}{\partial y^2} = 0$$

ii.)
$$\alpha \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$$

iii.)
$$\frac{\partial^2 u}{\partial x^2} + x^2 \frac{\partial^2 u}{\partial y^2} = 0, \quad x \neq 0$$

[3 Marks]

c) Solve the heat equation,

$$\frac{\partial^2 u(x,t)}{\partial x^2} - 2 \frac{\partial u(x,t)}{\partial t} = 0 \quad \text{for } 0 \le x \le 1 \text{ and } 0 \le t \le 0.05$$

with the initial conditions,

$$u(x,0) = f(x) = x - x^2$$

and the boundary conditions,

$$u(0,t)=0$$

$$u(1,t)=t.$$

Use, h = 0.25 and k = 0.025, where h and k are step sizes along x and t axes respectively.

[6 Marks]