

Synthesis and characterization of nano Co₃O₄- B co-doped g-CN heterojunction for photocatalytic degradation of textile dye wastewater under sunlight

Wickramasingha W.G.B, Kalutharage N.K.*, Hewage J.W.

¹Department of Chemistry, University of Ruhuna, Wellamadama, Matara, Sri Lanka.

Photocatalysis is the best method for organic dye removal process due to non-toxicity of the final products. Hetero-junction photocatalysis has become a hot topic in removal of organic pollutants from the wastewater under sunlight. In this study the photocatalytic activity of the boron doped graphitic carbon nitride (BCN) and tricobalt tetroxide (Co₃O₄) was used to produce visible light active Co₃O₄/BCN heterojunction photocatalyst. Graphitic carbon (g-C₃N₄) and B co- doped BCN with 0.5-10 (w/w) % was synthesized according to literature. 5% BCN has the lowest band gap energy of 2.64 eV. Different weight percentages Co₃O₄ (10-75 (w/w) %) was used to synthesize hetero-junctions catalyst. The 50 (w/w) % Co₃O₄-BCN showed the best band gap energy for the photocatalysis (2.34 eV, 530.0 nm). The photocatalysts were characterized by using FT- IR spectroscopy (809, 1237, 1317, 1407, 1555, 1631, 3000-3500 cm⁻¹ for g-C₃N₄ and 656 cm⁻¹ for Co₃O₄). Reactive black 5 dye (RB5) 50 ppm solution was used for the catalysis. The best photocatalyst dosage 0.3 g of g-C₃N₄ was found from 0.1- 0.4 g and 0.4 g of 50% (w/w) Co₃O₄-BCN from 0.1- 0.4 g was the best dosage at pH=4. Under sunlight, g-C₃N₄ was found the best photocatalyst. RB5 dye degradation reached 100% in 100 minutes under sunlight irradiation. Degradation efficiency was enhanced with the pH = 4 up to 100 % efficiency within 80 minutes.

Keywords: Hetero-junction photocatalyst, Organic pollutants, Band gap

*Corresponding author: knishantha@chem.ruh.ac.lk