500 500 CON CONTROL OF THE PARTY OF THE PART

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3. Examination in Engineering: July2016

Module Number: EE3302

Module Name: Engineering Electromagnetism

[Three Hours]

[Answer all questions, each question carries tenmarks]

(Permittivity of free space $\xi_0 = 10^{-9} / (36\pi)$ F/m and Permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ H/m)

Q1. The magnetic field component of a plane wave in a lossless dielectric ($\mu_r = 1$) is $\bar{H} = 30\sin(2\pi \times 10^8 t - 5x)\bar{a}$, mA/m.

a)	Find relative permittivity (ξ_r) of the medium.	[1 Mark]
b)	Calculate the wave length and wave velocity of the signal.	[2 Marks]
c)	Determined the wave impedance.	[1 Mark]
d)	Determined the polarization of the wave.	[2 Marks]
e)	Find the corresponding electric field component.	[2 Marks]
f)	Find the displacement current density.	[2 Marks]

- Q2. The magnetic circuit of Fig.Q2 has current of 10 A in the coil of 2000 turns. Assume that all branches have the same cross section of 2 cm² and that material of the core is iron with $\mu_r = 1500$.
 - a) Draw the magnetic circuit.
 - b) Calculate the reluctance of the iron core.
 - c) Calculate magnetic flux on iron core.

[10 Marks]

- Q3. a) What is electromagnetic compatibility? [1 Mark]
 b) What is electromagnetic interference? [1 Mark]
 c) Explain that how to assure electromagnetic compatibility. [2 Marks]
 d) explain electromagnetics controls? [2 Marks]
 - f) Discuss that what are the critical factors to be considered during the maintenance procedures and expansion stage of the systems. [2 Marks]

a) What do you meant by directive gain? Q4.

- b) What do you meant by effective area of the antenna?
- c) A magnetic field strength of 5 μ A/m is required at a point on $\theta = \pi/2$, which is 2 km from an antenna in air. Neglecting ohomic loss, how much power must the antenna transmit if it is a hertzian dipole of length $\,\lambda/25\,$
- A magnetic field strength of 5 μ A/m is required at a point on $\theta = \pi/2$, which is 2 km from an antenna in air. Neglecting ohomicloss, how much power must the antenna transmit if it is a half wave dipole? [10 Marks]

Q5. Answer all MCQ given below and each question carries 1 mark.

- a) Which of these is correct
 - $\overline{A} \times \overline{A} = |\overline{A}|^2$.
 - ii) $\overline{A} \times \overline{B} + \overline{B} \times \overline{A} = 0$.
 - iii) $\overline{a}_x.\overline{a}_v = \overline{a}_z.$
 - iv) $\overline{a}_k = \overline{a}_x \overline{a}_y$.
- b) By saying that the electrostatic field is conservative, we do not meant that
 - i) It is the gradient of a scalar potential.
 - ii) Its curl is identically zero.
 - iii) the work done in a closed path inside the field is zero.
 - iv) potential difference between any two point is zero.
- A potential field is given $V = 3x^2y yz$. Which of following is not true?
 - A unit normal to the equipotential surface V = -8 at P is -0.83 \overline{a}_x + 0.55 \overline{a}_y + $0.07 \ \overline{a}$
 - $x^2y = 1$ is an equipotential line on the xy-plane.
 - iii) The electric field at point P is 12 $\bar{a}_x 8\bar{a}_y \bar{a}_z$ V/m.
 - At point (1, 0, -1), V and E vanish.
- d) Which of these is not valid at point (0, 4, 0)
 - i) $\overline{a}_{\phi} = -\overline{a}_{x}$
 - ii) $\overline{a}_{\theta} = -\overline{a}_{z}$
 - iii) $\overline{a}_r = 4\overline{a}_r$
 - iv) $\overline{a}_{o} = \overline{a}_{v}$
- e) Which of following potentials does not satisfy laplace's equation?
 - i) $V = \rho \cos \phi + 10$
 - ii) V=10xy
 - iii) $V = r \cos \varphi$
 - iv) V=10/r

- f) Two conducting plates are inclined at an angle 30° to each other with a point charge between them. The number of image charges is
 - i) 12
 - ii) 11.
 - iii) 13.
 - iv) 10.
- g) The z-axis carries filamentary current of 10π along a_z . Which of these is incorrect
 - i) $\overline{H} = -\overline{a}_x A/m \text{ at } (0, 5, 0)$
 - ii) $\overline{H} = -\overline{a}_x \text{ A/m at } (5,\pi/4, 0)$
 - iii) $\overline{H} = -0.8 \ \overline{a}_x 0.6 \ \overline{a}_y \ \text{at (-3, 4, 0)}$
 - iv) $\overline{H} = -\overline{a}_{\varphi}$ at $(5.3\pi/2, 0)$
- h) If $\overline{E}_s = 10 \, \mathrm{e}^{\mathrm{j4x}}$, which of these is not a correct representation of \overline{E} ?
 - i) $\operatorname{Re}(\overline{E}_{s}e^{j\omega t})$
 - ii) $\operatorname{Re}(\overline{E}_{s}e^{-j\omega t})$
 - iii) $\operatorname{Im}(\overline{E}_{s}e^{j\omega t})$
 - iv) $10 \cos (\omega t + j4x) \overline{a}_{y}$
- i) The concept of displacement current was a major contribution attributed to
 - i) Faraday.
 - ii) Lenz.
 - iii) Maxwell.
 - iv) Lorentz.
- j) Given that $\overline{H} = 0.5e^{-0.1x}\sin(10^6t 2x) \ \overline{a}_z \text{A/m}$, which of these statements are incorrect
 - i) $\alpha = 0.1 \text{ Nm/m}$
 - ii) $\beta = -2 \text{ rad}$
 - iii) $\omega = 10^6 \text{rad/s}$
 - iv) The wave traveling along \overline{a}_{x} [10 Marks]

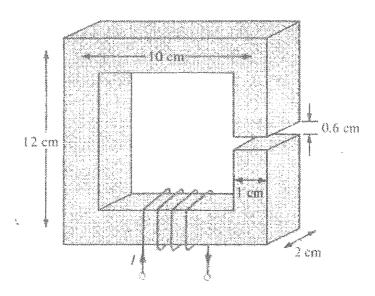


Fig. Q2