UNIVERSITY OF RUHUNA
 BACHELOR OF SCIENCE SPECIAL DEGREE(LEVEL I/II) SEMESTER II EXAMINATION JULY - 2020
 PHY4034 - Quantum Mechanics Part II Time: 02 Hours and 30 minutes Answer Five Questions Only

$$
2 \cos A \sin B=\sin (A+B)-\sin (A-B)
$$

1. Schrödinger equation for a given potential can be written as $i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi$. If the potential is independent of time (t), wave function $\Psi(x, t)$ can be written as $\Psi(x, t)=\psi(x) \phi(t)$
(a) i. Find the solution to time dependent wave function $\phi(t)$ where E is the separation constant.
ii. Derive the time independent Schrödinger equation.
(b) A particle of mass m is moving from $-x$ direction towards $+x$ direction in the following potential.

$V(x)= \begin{cases}\infty, & x \leq 0 \\ \mathrm{~V}_{0}, & 0<x<a \\ 0, & x \geq a\end{cases}$
where $V_{0}>0$.
Suppose $-V_{0}<E<0$, where E is the energy of the particle. let $k_{1}=\sqrt{\frac{2 m\left(V_{0}+E\right)}{\hbar^{2}}}$ and $k_{2}=\sqrt{\frac{-2 m E}{\hbar^{2}}}$
i. Find the time independent wave functions for the regions where $V(x)=\infty, \mathrm{V}_{0}$ and 0 respectively.
ii. Using the boundary conditions at $x=0$ and $x=a$, show that the formula for the allowed energies can be written as $k_{1} a \cot \left(k_{1} a\right)=-k_{2} a$.
iii. Use a graphical method and show that $V_{0}>\frac{\pi^{2} \hbar^{2}}{8 m a^{2}}$ in order to have at least one bound state.
2. (a) Three states of a system are defined as $|\alpha\rangle=\sqrt{\frac{1}{2}}\left(\begin{array}{c}1 \\ -i \\ 0\end{array}\right)$,
$|\beta\rangle=\sqrt{\frac{1}{2}}\left(\begin{array}{c}-i \\ 1 \\ 0\end{array}\right)$, and $|\gamma\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Write down the corresponding bra vectors.
(b) Consider a physical system defined by the Hamiltonian, $H=\epsilon\left(\begin{array}{ccc}0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$ and state $\psi_{0}=$ $\sqrt{\frac{1}{5}}\left(\begin{array}{c}1-i \\ 1-i \\ 1\end{array}\right)$
i. What values will we obtain when measuring energy of the system?
ii. How many degenerate states you would have in the system?
iii. Find the eigen vecotrs of H and show that they are equal to $|\alpha\rangle,|\beta\rangle$ and $|\gamma\rangle$ in part (a).
iv. Write down the state ψ_{0} as a linear combination of the eigenvectors of H ?
v. What are the probabilities of finding each energy eigenvalue?
vi. Calculate expectation value of $\mathrm{H}(<H>)$.
3. Hamiltonian of a harmonic oscillator is given as $\hat{H}=\frac{1}{2}\left(\frac{\hat{P}^{2}}{m}+m w^{2} \hat{x}^{2}\right)$ where \hat{P} and \hat{x} are momentum and position operators. Raising and lowering operators of a harmonic oscillator are defined as $\hat{a}_{ \pm}=\frac{1}{\sqrt{2 \hbar \omega m}}(\mp i \hat{P}+m \omega \hat{x})$.
(a) i. Show that \hat{H} can be written as $\hbar \omega\left(\hat{a}_{\mp} \hat{a}_{ \pm} \mp \frac{1}{2}\right)$.
ii. Show that the commutation relation, $\left[\hat{a}_{-}, \hat{a}_{+}\right]=1$.
iii. Write down the operators \hat{x} and \hat{p} in terms of \hat{a}_{+}and \hat{a}_{-}.
iv. Find the expectation value of the total energy in the $n^{\text {th }}$ state of the harmonic oscillator.
(b) Consider a particle of mass m and charge q moving under the influence of a one dimensional harmonic oscillator potential. The particle is placed in a constant electric field ϵ and the Hamiltonian of the particle is given by,
$\hat{H}_{0}=\frac{1}{2}\left(\frac{\hat{P}^{2}}{m}+m w^{2} \hat{x}^{2}\right)-q \epsilon \hat{x}$.
i. Show that the H_{0} can be written in the form, $\hat{H}_{0}=\hat{H}-K$ where K is a constant that depends on ϵ, q, m and ω.
ii. Derive an expression for the energy in $n^{\text {th }}$ excited state.
(You may use the relations, $\hat{a}_{-}|n\rangle=\sqrt{n}|n-1\rangle$ and $\hat{a}_{+}|n\rangle=\sqrt{n+1}|n+1\rangle$)
4. The wave function of a hydrogen atom can be written as $\psi_{n l m}=R_{n l}(r) Y_{l}^{m}(\theta, \Phi)$. Where $R_{n l}(r)=\frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho)$ and the Bohr radius is given by the relation $\rho=\frac{r}{a n}$.
(a) Given that $v(\rho)=\sum_{j=0}^{+\infty} c_{j} \rho^{j}$ and $c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} c_{j}$ show that the radial wave function $R_{21}(r)=\frac{C_{0}}{4 a^{2}} r e^{\frac{-r}{2 a}}$.
(b) Consider a spinless particle represented by a wave function, $\psi(r, \theta, \phi)=A e^{-\alpha r}(\cos \phi \sin \theta+\sin \phi \sin \theta+\cos \theta)$
i. Show that the angular wave function $(Y(\theta, \Phi))$ can be written as a linear combination of spherical harmonics.
ii. Find the normalization constant A.
iii. What is the total angular momentum of the particle?
iv. What is the expectation value of the z component of the angular momentum $\left(<L_{z}>\right)$?
v . If the z component of the angular momentum was measured, what is the probability that the result would be $L_{z}=+\hbar$?
The first few spherical harmonics are given as: $Y_{0}^{0}=\sqrt{\frac{1}{4 \pi}}, Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta$, $Y_{1}^{ \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm \phi}, Y_{2}^{ \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm \phi}$.
You may use the orthonormalization relation: $\int_{0}^{2 \pi} d \Phi \int_{0}^{\pi} \sin \theta d \theta Y_{l^{\prime}}^{m^{\prime}}(\theta, \Phi) Y_{l}^{m}(\theta, \Phi)=$ $\delta_{l^{\prime} l} \delta_{m^{\prime} m}$
5. Assume that the Hamiltonian H of a system is given by $H=H^{0}+\lambda H^{1}$. Where H^{0} and H^{1} are given as unperturbed and perturbed Hamiltonians of the system.
(a) Write ψ_{n} and E_{n} as power series of λ and show that the $1^{\text {st }}$ order correction for the energy, $E_{n}^{1}=\left\langle\psi_{n}^{0}\right| H^{1}\left|\psi_{n}^{0}\right\rangle$.
(b) A spinless particle of mass m moving in an infinite one dimensional potential well of length $2 L$, with $x=0$ and $x=2 L$:
$V(x)= \begin{cases}0 & 0 \leq x \leq 2 L \\ \infty & \text { otherwise } .\end{cases}$
i. Use the Schrödinger equation to find the energy of the $n^{t h}$ excited state.
ii. The systems is slightly modified at the bottom by using the the purturbation $V_{p}(x)=\lambda V_{0} \sin \left(\frac{\pi x}{2 L}\right)$. Assume that both λ and V_{0} are constants. Calculate the $1^{s t}$ order correction for the energy of $n^{t h}$ state of the system.
6. (a) In which situations the variational principal is useful in Quantum mechaincs?
(b) Suppose that the ground state energy of a system described by a Hamiltonian H is E_{g}. Assuming that the wave function Ψ is normalized and the H forms a complete set, show that $E_{g} \leq\langle\Psi| H|\Psi\rangle$.
(c) Use the variational method to estimate the ground state energy of a particle of mass m moving in one dimensional potential well $V(x)=\lambda|x| ; \lambda$ is a constant (Hint: You may use the trial function $A e^{-\alpha|x|}$; where A is the normalization constant and α is a scale parameter.)
