UNIVERSITY OF RUHUNA BACHELOR OF SCIENCE SPECIAL DEGREE(LEVEL I/II) SEMESTER II EXAMINATION JULY - 2020 PHY4034 - Quantum Mechanics Part II Time: 02 Hours and 30 minutes Answer <u>Five</u> Questions Only

 $2\cos A\sin B = \sin (A+B) - \sin (A-B)$

- 1. Schrödinger equation for a given potential can be written as $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$. If the potential is independent of time (t), wave function $\Psi(x,t)$ can be written as $\Psi(x,t) = \psi(x)\phi(t)$
 - (a) i. Find the solution to time dependent wave function $\phi(t)$ where E is the separation constant.
 - ii. Derive the time independent Schrödinger equation.
 - (b) A particle of mass m is moving from -x direction towards +x direction in the following potential.

$$V(x) = \begin{cases} \infty, & x \le 0\\ V_0, & 0 < x < a\\ 0, & x \ge a \end{cases}$$

where $V_0 > 0$.

Suppose $-V_0 < E < 0$, where E is the energy of the particle. let $k_1 = \sqrt{\frac{2m(V_0+E)}{\hbar^2}}$ and $k_2 = \sqrt{\frac{-2mE}{\hbar^2}}$

- i. Find the time independent wave functions for the regions where $V(x) = \infty$, V_0 and 0 respectively.
- ii. Using the boundary conditions at x = 0 and x = a, show that the formula for the allowed energies can be written as $k_1 a \cot(k_1 a) = -k_2 a$.
- iii. Use a graphical method and show that $V_0 > \frac{\pi^2 \hbar^2}{8ma^2}$ in order to have at least one bound state.

2. (a) Three states of a system are defined as $|\alpha\rangle = \sqrt{\frac{1}{2}} \begin{pmatrix} 1\\ -i\\ 0 \end{pmatrix}$,

$$|\beta\rangle = \sqrt{\frac{1}{2}} \begin{pmatrix} -i\\ 1\\ 0 \end{pmatrix}$$
, and $|\gamma\rangle = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$. Write down the corresponding bra vectors.

(b) Consider a physical system defined by the Hamiltonian, $H = \epsilon \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ and state $\psi_0 = \frac{1}{2} \left(\begin{array}{cc} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1 \end{array} \right)$

$$\sqrt{\frac{1}{5}} \begin{pmatrix} 1-i\\ 1-i\\ 1 \end{pmatrix}$$

- i. What values will we obtain when measuring energy of the system?
- ii. How many degenerate states you would have in the system?
- iii. Find the eigen vectors of H and show that they are equal to $|\alpha\rangle$, $|\beta\rangle$ and $|\gamma\rangle$ in part (a).
- iv. Write down the state ψ_0 as a linear combination of the eigenvectors of H?
- v. What are the probabilities of finding each energy eigenvalue?
- vi. Calculate expectation value of H $(\langle H \rangle)$.
- 3. Hamiltonian of a harmonic oscillator is given as $\hat{H} = \frac{1}{2}(\frac{\hat{P}^2}{m} + mw^2\hat{x}^2)$ where \hat{P} and \hat{x} are momentum and position operators. Raising and lowering operators of a harmonic oscillator are defined as $\hat{a}_{\pm} = \frac{1}{\sqrt{2\hbar\omega m}}(\mp i\hat{P} + m\omega\hat{x})$.
 - (a) i. Show that \hat{H} can be written as $\hbar\omega(\hat{a}_{\pm}\hat{a}_{\pm}\pm\frac{1}{2})$.
 - ii. Show that the commutation relation, $[\hat{a}_{-}, \hat{a}_{+}] = 1$.
 - iii. Write down the operators \hat{x} and \hat{p} in terms of \hat{a}_+ and \hat{a}_- .
 - iv. Find the expectation value of the total energy in the n^{th} state of the harmonic oscillator.
 - (b) Consider a particle of mass m and charge q moving under the influence of a one dimensional harmonic oscillator potential. The particle is placed in a constant electric field ϵ and the Hamiltonian of the particle is given by,

$$\hat{H}_0 = \frac{1}{2}(\frac{\hat{P}^2}{m} + mw^2\hat{x}^2) - q\epsilon\hat{x}.$$

- i. Show that the H_0 can be written in the form, $\hat{H}_0 = \hat{H} K$ where K is a constant that depends on ϵ, q, m and ω .
- ii. Derive an expression for the energy in n^{th} excited state.

(You may use the relations, $\hat{a}_{-} |n\rangle = \sqrt{n} |n-1\rangle$ and $\hat{a}_{+} |n\rangle = \sqrt{n+1} |n+1\rangle$)

- 4. The wave function of a hydrogen atom can be written as $\psi_{nlm} = R_{nl}(r)Y_l^m(\theta, \Phi)$. Where $R_{nl}(r) = \frac{1}{r}\rho^{l+1}e^{-\rho}v(\rho)$ and the Bohr radius is given by the relation $\rho = \frac{r}{an}$.
 - (a) Given that $v(\rho) = \sum_{j=0}^{+\infty} c_j \rho^j$ and $c_{j+1} = \frac{2(j+l+1-n)}{(j+1)(j+2l+2)} c_j$ show that the radial wave function $R_{21}(r) = \frac{C_0}{4a^2} r e^{\frac{-r}{2a}}$.
 - (b) Consider a spinless particle represented by a wave function, $\psi(r,\theta,\phi) = Ae^{-\alpha r}(\cos\phi\sin\theta + \sin\phi\sin\theta + \cos\theta)$
 - i. Show that the angular wave function $(Y(\theta, \Phi))$ can be written as a linear combination of spherical harmonics.
 - ii. Find the normalization constant A.
 - iii. What is the total angular momentum of the particle?
 - iv. What is the expectation value of the z component of the angular momentum $(\langle L_z \rangle)$?
 - v. If the z component of the angular momentum was measured, what is the probability that the result would be $L_z = +\hbar$?

The first few spherical harmonics are given as: $Y_0^0 = \sqrt{\frac{1}{4\pi}}$, $Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta$, $Y_1^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm \phi}$, $Y_2^{\pm 1} = \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm \phi}$.

You may use the orthonormalization relation: $\int_0^{2\pi} d\Phi \int_0^{\pi} \sin \theta \, d\theta \, Y_{l'}^{m'}(\theta, \Phi) \, Y_l^m(\theta, \Phi) = \delta_{l'l} \delta_{m'm}$

- 5. Assume that the Hamiltonian H of a system is given by $H = H^0 + \lambda H^1$. Where H^0 and H^1 are given as unperturbed and perturbed Hamiltonians of the system.
 - (a) Write ψ_n and E_n as power series of λ and show that the 1st order correction for the energy, $E_n^1 = \langle \psi_n^0 | H^1 | \psi_n^0 \rangle$.
 - (b) A spinless particle of mass m moving in an infinite one dimensional potential well of length 2L, with x = 0 and x = 2L:

$$V(x) = \begin{cases} 0 & 0 \le x \le 2L \\ \infty & \text{otherwise.} \end{cases}$$

- i. Use the Schrödinger equation to find the energy of the n^{th} excited state.
- ii. The systems is slightly modified at the bottom by using the the purturbation $V_p(x) = \lambda V_0 sin(\frac{\pi x}{2L})$. Assume that both λ and V_0 are constants. Calculate the 1st order correction for the energy of n^{th} state of the system.

- 6. (a) In which situations the variational principal is useful in Quantum mechainces?
 - (b) Suppose that the ground state energy of a system described by a Hamiltonian H is E_g . Assuming that the wave function Ψ is normalized and the H forms a complete set, show that $E_g \leq \langle \Psi | H | \Psi \rangle$.
 - (c) Use the variational method to estimate the ground state energy of a particle of mass m moving in one dimensional potential well $V(x) = \lambda |x|$; λ is a constant (Hint: You may use the trial function $Ae^{-\alpha |x|}$; where A is the normalization constant and α is a scale parameter.)