UNIVERSITY OF RUHUNA

BACHELOR OF SCIENCE (SPECIAL) DEGREE LEVEL I/II (SEMESTER II) EXAMINATION DECEMBER 2014

Subject: Nuclear and Particle Physics Course Unit: PHY4084

Time: Two and half hours

Part II (Essay)

Answer **Five(05)** questions only

All symbols have their usual meaning

 $\label{eq:statistical} \begin{array}{l} \underline{\text{Useful constants}} \\ \text{Avagadro's number, } A_0 = 6.022 \times 10^{23} \, \text{nuclei/mole} \\ 1 \, \text{u} = 931.5 \ \text{MeV/c}^2 = 1.66 \times 10^{-27} \, \text{kg} \\ \text{Mass of proton, } M_p = 1.007276470 \, \text{u} \\ \text{Mass of neutron, } M_n = 1.008664904 \, \text{u} \\ \text{Mass of electron, } M_e = 5.4858026 \times 10^{-4} \, \text{u} \\ \hbar = 1.0546 \times 10^{-34} \, \text{J s} \\ 1 \, \text{MeV} = 1.602 \times 10^{-13} \, \text{J} \end{array}$

Calculate values for a_c and a_a in the semi-empirical mass formula, using the following facts: ³⁵₁₈Ar emits positrons with a maximum kinetic energy of 4.95 MeV and ¹³⁵₅₆Ba is the stable isobar of mass number 135. Express your answer in MeV.
(The semi-empirical mass formula,

$$M(Z,A) = ZM_p + (A-Z)M_n - a_vA + a_sA^{2/3} + a_c\frac{Z^2}{A^{1/3}} + a_a\frac{(A-2Z)^2}{A} \pm \frac{a_p}{A^{3/4}}$$

2. A simple quantum mechanical model of the deuteron is based on a spherically symmetric potential well given by

$$V(r) = -V_0 \quad \text{for} \quad r \le R$$
$$= 0 \qquad \text{for} \quad r > R$$

where V_0 is the depth of the square-well potential and R is a measure of the effective diameter of the deuteron.

The neutron wave functions are: for $r \leq R$

$$u_1(r) = A\sin k_1 r + B\cos k_1 r$$

with $k_1 = \sqrt{M(V_0 - E)/\hbar^2}$, and for $r \ge R$

$$u_2(r) = Ce^{-k_2r} + De^{+k_2r}$$

with $k_2 = \sqrt{\frac{ME}{\hbar^2}}$.

- (a) Use the boundary conditions and the continuity and normalization conditions to evaluate the coefficients A, B, C and D in the neutron wave functions.
- (b) If the binding energy of the deuteron is 2.226 MeV, and R = 2 fm, calculate the depth of the potential, assuming that $V_0 \gg 2.226 \text{ MeV}$ and the mass, $M = 1.667 \times 10^{-27} \text{ kg}$.
- (c) From the resulting wave function, evaluate the root-mean-square radius of the deuteron (you do not need to simplify the expression).
- 3. The lowest levels in the shell model in order of increasing energy are:

$$1S_{\frac{1}{2}}, 1P_{\frac{3}{2}}, 1P_{\frac{1}{2}}, 1D_{\frac{5}{2}}, 2S_{\frac{1}{2}}, 1D_{\frac{3}{2}}, 1F_j, 2P_j$$

- (a) What are the subscript(j) for the lowest 1F and 2P?
- (b) What are the configurations of the ground state of the nuclei $\frac{41}{20}Ca$ and $\frac{41}{21}Sc$?
- (c) What values are predicted in the shell model for their spins, parities and magnetic dipole moments?
- (The magnetic moment predicted by the shell model is

 $\mu = \frac{\mu_N}{2(j+1)} \{ g_l[l(l+1) + j(j+1) - s(s+1)] + g_s[s(s+1) + j(j+1) - l(l+1)] \}.$ For proton state $g_l = 1$ and $g_s = 5.586$, and for neutron state $g_l = 0$ and $g_s = -3.826$).

- 4. (a) The fission of ${}^{235}U$ is induced by a neutron and the fission fragments are ${}^{148}La$ and ${}^{87}Br$. Calculate the energy released when 1 g of ${}^{235}U$ fission into ${}^{148}La$ and ${}^{87}Br$. (Atomic masses $M({}^{235}_{92}U) \approx 235.0439 \,\mathrm{u}$, $M({}^{148}_{57}La) \approx 147.9320 \,\mathrm{u}$, $M({}^{87}_{35}Br) \approx 86.9207 \,\mathrm{u}$)
 - (b) If the efficiency for conversion of heat to electricity is only 5%, calculate the rate of consumption of ^{235}U fuel per day in a nuclear reactor operating at a power level of 500 MW of electricity.
- 5. It is expected to operate the proton-proton Large Hadronic Collider at a beam energy of 7 TeV from next year. Rest mass of the proton is ~ 938 MeV.
 - (a) Find the total available energy in the center of mass frame of the system for new particle production? If it produces particle-antiparticle pair what would be the maximum limit of the mass of the particle?
 - (b) Calculate the speed of the proton at this energy.
 - (c) Calculate the time, with respect to the proton, taken to travel a distance of 3 km at this speed.
 - (d) Calculate the de Broglie wavelength associated with a proton of the beam. Compare your answer with the size of known particles. ($hc = 12.4 \times 10^{-7} \,\text{eV.m}$)
 - (e) Suppose such a proton beam is used to collide with another proton at rest in a fixed target experiment. Find(derivation of the relevant expression is expected) the available center of mass energy for particle production in such a fixed target experiment. Compare the importance of collider experiments in compared with fixed target experiments.
 - (f) Discuss a disadvantage of collider experiment.
- 6. Explain, qualitatively, the symmetry associated with the conservation of linear momentum, angular momentum, energy and electric charge.

State the relationship between symmetry of the wave-function and statistics obeyed by two identical fermions and bosons respectively.

Particle A decays into two spin half particles. Write down the possible spin wave-function states for the final state two-particle system. Discuss the symmetry properties of the spin wave function.

- (a) If the two particles are identical, find the possible values for the spin of particle A.
- (b) If the spin of particle A is 1 find the allowed values for the orbital angular momentum of the system of two identical particles.
- (c) A heavy meson of spin 1 decays into two pions of zero spin. Show that requirements on the symmetry of the total wave function of the final state prevent the decay into two π^0 mesons. If the meson does decay electromagnetically into $\pi^+\pi^-$, what is the intrinsic parity of the heavy meson?
- 7. (a) Which of the following reactions are allowed? Verify relevant conservation rules and classify all allowed reactions. Explain each allowed reactions diagrammatically in terms of gauge boson exchange.
 - i. $\pi^- + p \rightarrow \Sigma^- + K^+$ ii. $\Lambda_c \rightarrow p + k^- + \pi^+$ iii. $K^- + p \rightarrow \Lambda + \pi^0$ iv. $\pi^- + p \rightarrow K^- + K^0$ v. $K^+ + n \rightarrow \Sigma^+ + \pi^0$ vi. $\Omega^- \rightarrow \Lambda + K^$ vii. $t \rightarrow b + \mu^+ + \nu_{\mu}$ viii. $K^+ \rightarrow \pi^+ + \pi^0$ ix. $\mu^+ + \nu_{\mu} \rightarrow e^+ + \nu_e$ x. $\Sigma^- \rightarrow n + \pi^-$
 - (b) Following reaction shows a possible way of production of Higgs particle (H) and a possible decay channel.

What do you expect to see in the detector? Explain briefly. How would you estimate the mass of the Higgs boson?

- 8. Answer any three of the following parts
 - (a) Explain, briefly, the origin of Cosmic Microwave Background Radiation.
 - (b) Explain the relationship between the range of four fundamental interactions and the mass of their associated gauge bosons.
 - (c) Why the introduction of colour degree of freedom was necessary? Explain, briefly, considering baryons and mesons.
 - (d) Explain the properties of particles of baryon decuplet.