

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 8 Examination in Engineering: November 2016

Module Number: EE8208

Module Name: Intelligent Systems Design

[Three Hours]

[Answer all questions. Marks for each question is indicated in the page]

- Q1 a) i) What is a fuzzy set? Describe by characterizing the 'universe of discourse', 'membership function', and 'fuzzy elements'.
 - Contrast fuzzy sets with crisp sets.
 - iii) Who is considered as the founder of fuzzy logic?
 - iv) Mention two properties of fuzzy sets.

[5 Marks]

- b) Room temperature felt by human beings is to be modeled (described) via fuzzy sets.
 - i) Define the universe of discourse.
 - ii) Give 5 linguistic variables describing the room temperature.
 - iii) Define the fuzzy sets giving the membership functions for the variables identified in part ii).
 - iv) Describe the technique to define the fuzzy sets in iii).

[8 Marks]

- Q2 Figure Q2 shows a water-level controlling system of a tank T. Main task of the fuzzy controller C is to keep the water level at SV [m] (*set value*) by controlling the water flow to the tank via the valve V1. The flow control of V1 is contiguous and proportional to the fuzzy controller's output du. Actual water level PV (*process value*) is available to the fuzzy controller through its feedback loop.
 - a) Define the error and the rete of error of the fuzzy controller.
 - b) Define the rule-base of the controlling action.
 - c) Identify the linguistic variables of the rule-base and define the corresponding fuzzy sets.
 - d) Assume certain numerical values for error and rate of error, and calculate the corresponding controller output-change du. Use the following fuzzy operators wherever necessary.

Dogg 1 of 2

Zadeh AND: $\mu = \min(\mu_A, \mu_B)$ Lukasiewicz OR: $\mu = \min(\mu_A + \mu_B, 1)$

Mamdani THEN: $\mu = \min(\mu_A, \mu_B)$

Figure Q2: Fuzzy logic based water level-controlling system

[12 Marks]

Q3 a) Briefly explain the followings

- i) An artificial neural network
- ii) The Supervised learning of artificial neural networks
- iii) A decision boundary

[3 Marks]

- b) i) Write down an algorithm for perceptron learning.
 - ii) By starting with weight vector W = [0.1 0.2] and bias 0.5, use perceptron learning rule to determine the decision boundary for the data set

$$\left\{ \left(\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, 1 \right), \quad \left(\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, 0 \right) \right\}$$

[7 Marks]

Q4 a) Describe the learning process

- i) supervised Hebbian rule.
- ii) pseudo inverse rule.

[2 Marks]

b) Let (x, t_1) and (x_2, t_2) be two prototype input/output vectors such that

$$(x, t_1) = \left(\begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \text{ and } (x_2, t_2) = \left(\begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

- i) Are x_1 and x_2 orthonormal
- ii) Use supervised Hebbian rule to determine the weight matrix of the network
- iii) Repeat part ii. using the pseudo inverse rule.
- iv) Compare the answers in parts ii. and iii.

[6 Marks]

c) Consider the artificial neural network with the architecture 2-2-1 with weights between input and hidden layers

$$W = \begin{bmatrix} 0.2 & 0.1 \\ -0.1 & 0.2 \end{bmatrix}$$

and weights between hidden and output layer V = [0.2 - 0.1].

Use the back propagation algorithm to compute the error between desired and actual output after 2 iterations for the dataset

$$\left(\begin{bmatrix}1\\0\end{bmatrix},1\right)$$

Use log sigmoid and linear activation functions for hidden and output layers respectively, and learning rate is 0.1.

[7 Marks]