

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 8 Examination in Engineering: November 2016

Module Number: EE8209

Module Name: Microwave Communication

[Three Hours]

[Answer all questions, each question carries 10 marks]

All the notations have their usual meanings.

Q1 a) Derive an expression for the attenuation of TM_{nm} mode in a circular waveguide with finite conductivity.

[2Marks]

- b) A circular copper waveguide has a radius 0.4 cm. It is filled with a dielectric material with $\xi_r = 1.5$ and $\tan \delta = 0.002$.
 - i) Determine the first four propagation modes and their cut-off frequencies [2Marks]
 - ii) Calculate the total attenuation for the dominant mode.

[2Marks]

c) i) Derive a transcendental equation for the cutoff frequency of the TM modes of a coaxial waveguide.

[2Marks]

ii) Using tables, obtain an approximate value of $k_c a$ for TM_{01} mode when (b/a) = 2

[2Marks]

Q2 a) The maximum power capacity of a coaxial line is limited by voltage breakdown and is given by

$$P_{\text{max}} = \frac{\pi a^2 E_d^2}{\eta_0} \ln \frac{b}{a}$$

where E_d is the field strength at breakdown.

- Determine the value of $\frac{b}{a}$ that maximizes the maximum power capacity
- ii) Show that the corresponding characteristics impedance is 30Ω

[5 Marks]

b) A radio transmitter is connected to an antenna having an impedance $(80 + j \ 40)\Omega$ with a 50 Ω coaxial cable. If the 50 Ω transmitter delivers 30 W when connected to a 50 Ω load, how much power is delivered to the antenna?

[5 Marks]

- Q3. a) Briefly explain the following parameters of a transmission line.
 - i) Intrinsic impedance
 - ii) Wave impedance
 - iii) Characteristics impedance

[3 Marks]

- A transmission line has the following per unit length parameters; $L = 0.5 \, \mu\text{H/m}$, $C = 200 \, \text{pF/m}$, $R = 4.0 \, \Omega/\text{m}$, and $G = 0.02 \, \text{S/m}$.
 - i) Calculate the propagation constant and characteristics impedance of the transmission line at 800MHz.

[3 Marks]

ii) If the line is 30 cm long, what is the attenuation in dB?

[2 Marks]

iii) Recalculate these quantities in the absence of loss.

[2 Marks]

Q4 a) Consider a rectangular waveguide with $a = 2.286 \,\mathrm{cm}$ and $b = 1.016 \,\mathrm{cm}$ cm, air filled for z < 0 and Rexolite filled (r = 2.54) for z > 0, as shown in Figure Q4 a). If the operating frequency is 10 GHz, use an equivalent transmission line model to compute the reflection coefficient of aTE_{10} wave incident on the interface from z < 0.

Hint:

$$k_0 = 209.4 \,\mathrm{m}^{-1}$$

$$\beta_a = \sqrt{k_0^2 - \left(\frac{\pi}{a}\right)^2}$$

$$\beta_d = \sqrt{\epsilon_r k_0^2 - \left(\frac{\pi}{a}\right)^2}$$

[5 Marks]

b) Determine the scattering parameters of the 3 dB attenuator circuit shown in Figure Q4 b). Assume that the Characteristics impedance of the wave guide is 50 Ω .

[5 Marks]

Q5 A two-port network consist of the following scattering matrix.

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

a) Determine whether the network is reciprocal and lossless.

[5 Marks]

b) If port 2 is terminated with a matched load, what is the return loss seen at port 1? [3 Marks]

c) If port 2 is terminated with a short circuit, what is the return loss seen at port 1? [2 Marks]

Figure Q4 a): Geometry of a partially filled waveguide

Figure Q4 b): A matched 3 dB attenuator with a 50 Ω characteristic impedance

Table 1: Summary of results for circular waveguide

Quantity	TE _{nm} Mode	TM _{nm} Mode
ķ	$\omega\sqrt{\mu\epsilon}$	$\omega\sqrt{\mu\epsilon}$
$\tilde{\chi}_{C}$	$\frac{\hat{Pnm}}{a}$	$\frac{p_{nm}}{a}$
ß	$\sqrt{k^2-k_c^2}$	$\sqrt{k^2-k_c^2}$
$\lambda_{\mathcal{C}}$	$\frac{2\pi}{k_c}$	$\frac{2\pi}{k_c}$
λg	$\frac{2\pi}{\beta} \frac{\omega}{\beta}$	$\frac{2\pi}{\beta}$ $\frac{\omega}{\beta}$
v_p	$\frac{\omega}{eta}$	•
α_d	$\frac{k^2 \tan \delta}{2\beta}$	$\frac{k^2 \tan \delta}{2\beta}$
E_{z}	0	$(A\sin n\phi + B\cos n\phi)J_n(k_{CP})e^{-j\beta z}$
H_{z}	$(A\sin n\phi + B\cos n\phi)J_n(k_C\rho)e^{-j\beta z}$	0
	$\frac{-j\omega\mu n}{k_C^2\rho}(A\cos n\phi - B\sin n\phi)J_n(k_C\rho)e^{-j\beta z}$	
\mathcal{E}_{ϕ}	$\frac{j\omega\mu}{k_c}(A\sin n\phi + B\cos n\phi)J_n^f(k_c\rho)e^{-j\beta z}$	$\frac{-j\beta n}{k_c^2\rho}(A\cos n\phi - B\sin n\phi)J_n(k_c\rho)e^{-j\beta z}$
	$\frac{-j\beta}{k_c}(A\sin n\phi + B\cos n\phi)J'_n(k_c\rho)e^{-j\beta z}$	The F
H_{ϕ}	$\frac{-j\beta n}{k_C^2\rho}(A\cos n\phi - B\sin n\phi)J_n(k_C\rho)e^{-j\beta z}$	$\frac{-j\omega\epsilon}{k_c}(A\sin n\phi + B\cos n\phi)J'_n(k_c\rho)e^{-j\beta z}$
Z	$Z_{\text{TE}} = \frac{k\eta}{\beta}$	$Z_{\text{TM}} = \frac{\beta \eta}{k}$

Table 2: value of P_{nm} for TM modes of circular waveguide

n	p_{n1}	p_{n2}	p_{n3}
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620

Table 3: Value of p_{nm}^{*} for TE modes of circular waveguide

p_{n1}	p_{m2}	p_{n3}			
2.405	5.520	8.654			
3.832	7.016	10.174			
5.135	8.417	11.620			
	2.405 3.832	p_{n1} p_{n2} 2.405 5.520 3.832 7.016 5.135 8.417			