UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 6 Examination in Engineering: November 2016

Module Number: ME6301

Module Name: Advanced Fluid Mechanics

[Three Hours]

[Answer all questions, each question carries twelve marks]

All assumptions must be stated clearly. Sketches and diagrams are to be provided where required. Symbols stated herein denote standard parameters.

Q1 a) Consider a particle moving vertically downward with an instantaneous velocity U in a fluid media. Derive the deferential equation for the motion of the particle. (Use usual notations)

[2 Marks]

b) Consider the motion of a spherical particle on vertical plane in a moving fluid with uniform velocity U in horizontal direction. The particle is with the diameter (d) and density (ρ_p) and the fluid is having density (ρ) and viscosity (μ) . By assuming that the motion of the particle occurs in Stroke Region, derive expression for the velocity components of the particle.

[6 Marks]

c) What are the practical usages of a packed bed of solid particles?

[1 Marks]

d) By using usual notations for a packed bed of solid particles, derive the following equation.

 $V_e = \frac{U_m}{\varepsilon} \left(\frac{l_e}{l}\right)$

Where V_e , U_m , l_e , l and ϵ are Effective mean absolute velocity, superficial velocity, effective length of the flow channel, thickness of the bed and void fraction, respectively.

[3.0 Marks]

Q2 a) Discuss the terms 'lift force' and 'drag force'.

[1 Marks]

b) By using suitable examples, explain different methods to reduce drag force.

[1 Marks]

c) What is wake region? How does it affect a moving object?

[2 Marks]

...Question Q2 is continued on page 2

d) With suitable sketches, describe how to gain high lift for air foils.

[2 Marks]

e) Weight of a plane is 25000 N and its wing area is 35 m². The speed of the aircraft is 135 knots. The maximum power of the engine is 6000 kW. About 73.5% of this power is utilized to overcome the resistance from the drag of the wind. If the density of the air is 1.22 kg/m³, calculate the drag coefficient and lift coefficient.

Note: 1 km/h = 0.539957 knots

[6 Marks]

Q3 a) Describe the difference between Dry Friction and Fluid Friction.

[1 Mark]

b) Explain the types of lubricants with examples.

[1 Mark]

c) What are the bad **effects** of friction?

[1 Mark]

d) What are the functions of a lubricant? Point out the properties of lubricants.

[2 Marks]

e) With usual notation, according to the slot leakage formula, flow rate (per unit width) can be written as follows.

$$q = \frac{Ut}{2} + \frac{t^3}{12\mu} \left(\frac{-dp}{dx}\right)$$

The above equation can be used to analyze a Tilted pad bearing as shown in Figure Q3.(e). By using above equation, derive;

- (i) The equation for the maximum pressure on the bearing pad.
- (ii) The following equations for the location point (t_0, x_0) of the maximum pressure.

$$t_0 = h - \frac{e^2}{h} \qquad \text{and} \quad x_0 = \frac{eb}{2h}$$

[7 Marks]

Q4 a) List the advantages of hydrostatic transmission.

[1 Mark]

b) List and explain four important applications of hydrostatic transmission.

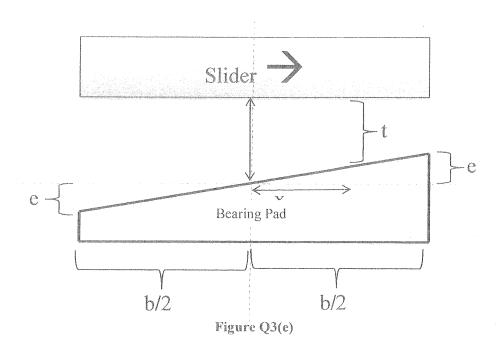
[1 Mark]

...Question Q4 is continued on page 3

- c) What are the three basic combinations/arrangements in hydrostatic drives? [1 Mark]
- d) In a flow-controlled hydraulic system, the maximum circuit pressure is 84.6 bar. The maximum capacity of the Variable Capacity Pump (VCP) is 115 cm³/rev and the capacity of the Fixed Capacity Motor (FCM) is 147.5 cm³/rev. The pump is directly coupled to an electric motor and is driven at a constant speed of 100 rpm. If the overall efficiency and the mechanical of the VCP and FCM are 85% and 90%, respectively, determine the following neglecting losses in pipes and valves;
 - (i) The maximum speed of FCM and power developed at this speed.
 - (ii) The torque supplied to the VCP from the electric motor under the conditions in Q4(d) (i)

[9 Marks]

Q5 a) Explain the classification of Directional Control Valves (DCVs) based on design characteristics.


[2 Marks]

b) Discuss the applications of five different centre positions in a 4/3 DCV (Four-way three-position valve).

[2 Marks]

- c) Design a hydraulic circuit to control the table of a surface grinder. The control circuit consists of a double –acting cylinder, a pilot-operated 4/2 DCV and a push button-operated 4/2 DCV. The designed circuit should have following characteristics,
 - (i) A double-acting cylinder is used to reciprocate motion of the table of the surface grinder.
 - (ii) The adjustable stops are fitted on the table of the surface grinder for limiting the length of the stroke.
 - (iii) Necessary pressure control valves are included in the circuit for safe operation.

[8 Marks]

Page 4 of 4