

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 2 Examination in Engineering: December 2015

Module Number: EE2202

Module Name: Introduction to Electronic Engineering

[Three Hours]

[Answer all questions, each question carry ten marks]

Q1 Short answer questions.

[Questions 1 to 17 carries 0.5 marks each and question 18 carries 1.5 marks]

- 1) State the difference between an analog and a digital signal.
- 2) State what is meant by the frequency spectrum of an analog signal.
- 3) Give the powers of 10 for the abbreviations Giga (G), Mega (M), kilo(k), Mili (m), Micro (μ) and Nano (n).
- 4) State the number of valence electrons in a Silicon (Si) atom.
- 5) State the number of valence electrons in Group 13 and Group 15 elements in the Standard Periodic Table.
- 6) Describe what is meant by a covalent bond.
- 7) State how a PN junction diode is formed.
- 8) Give the polarity of a DC supply to forward bias and reverse bias a diode.
- 9) When a DC supply is connected to the diode, define the charge carriers that contribute to the current flow in
 - i) the semiconductor
 - ii) the external circuit
- 10) Define the regulating region of a Zener diode.
- 11) In an elementary DC power supply, state the functions of
 - i) the rectifier
 - ii) the capacitor
- 12) Convert 74₁₀ to binary
- 13) Convert 1010 0101₂ to decimal
- 14) Draw the circuit symbol for a two input NAND gate and give its Boolean equation and the truth table.
- 15) Draw the circuit symbol for a two input NOR gate and give its Boolean equation and the truth table.
- 16) Add $8_{10} + 3_{10}$ using binary arithmetic.
- 17) Prove the Boolean expression A + 1 = 1
- 18) Use the Karnaugh map reduction technique to simplify the Boolean expression

$$X \ = \ \left(\overline{A} \ \overline{B} + A \ \overline{B} \right) \ \overline{C} \ + \ C \left(AB + A \overline{B} \right)$$

and draw the combinational logic circuit to implement the result.

- Q2 a) Figure Q2 a) shows a Si transistor bias circuit.
 - Define the configuration shown in Figure Q2 a).
 - ii) Reproduce the typical output characteristics for this configuration.
 - iii) Give the load line for the circuit.
 - iv) Determine the operating point of the transistor assuming the Emitter–Base junction is forward biased and taking a reasonable value for the current gain α for a good transistor.

[3 Marks]

- b) Figure Q2 b) shows the circuit for calculating the leakage current of a transistor.
 - i) Define the configuration shown in Figure Q2 b).
 - ii) Define the notation I_{CEO} for the leakage current given that $I_c = \alpha I_E + I_{CBO}$ with the usual notations.
 - iii) Formulate an expression relating the input and output currents.
 - iv) Define the current gain β for $I_{CEO} = 0$.
 - v) Express the current gain α in a) in terms of β .

[3.5 Marks]

- c) Figure Q2 c) shows the bias circuit for a Si transistor.
 - i) Define the configuration shown in Figure Q2 c).
 - ii) Formulate an expression for I_B given that $I_E = (\beta+1) I_B$.
 - iii) Determine the bias point of the transistor for $R_B = 115 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $V_{CC} = 16 \text{ V}$ and $\beta = 120$.

[3.5 Marks]

- Q3 a) i) Explain the purpose of biasing an amplifier and the effect of incorrect bias.
 - ii) Describe amplitude distortion with reference to bias in an amplifier.

[2.5 Marks]

- b) i) Figure Q3 b) i) shows the AC equivalent circuit for a Si transistor in Common-Base configuration. Using the same notation, define the input resistance and generate the AC equivalent circuit for the Si transistor in Common-Emitter configuration. The output resistance is given by r_c/β . Notations have their usual meanings.
 - ii) Figure Q3 b) ii) shows a Common-Emitter amplifier. By carrying out the AC analysis, formulate expressions for the voltage gain A_v and the current gain A_i of the amplifier.
 - iii) If a load resistance RL is connected to the amplifier in part ii)
 - I. Redraw the AC circuit and write an expression for the overall voltage gain.
 - II. Considering the load resistance terms only, explain the effect of AC load resistance on overall voltage gain.

[4.5 Marks]

- c) i) Reproduce the typical output characteristics and identify the regions for a NPN Si transistor to be operated as a switch.
 - ii) Give the circuit of a NPN Si transistor as a switch and briefly explain its operation for an input square pulse waveform.

[3.0 Marks]

- Q4 a) i) Sketch the structure of an N-type Junction Field Effect Transistor (JFET) and denote the terminals.
 - ii) Draw the circuit symbols for N-type and P-type JFETs.
 - iii) Describe with the aid of diagrams, the two ways depletion regions are generated in an N-type JFET.
 - iv) Describe the pinch-off condition.
 - v) Sketch the drain and transfer Characteristics for an N- type JFET and identify the different regions of operation.

[5 Marks]

- b) i) Define the acronym MOSFET.
 - ii) Give the circuit symbols for an N-type depletion type MOSFET and an enhancement type MOSFET.
 - iii) Show the structure and the bias for an N-type depletion type MOSFET.
 - iv) Show the structure and the bias for a P-type depletion type MOSFET.
 - v) State how the N-type depletion MOSFET can be used in the enhancement mode of operation.
 - vi) Sketch the typical drain characteristics for this MOSFET operating in the depletion and enhancement modes.

[5 Marks]

- Q5 Use the provided sheet of Figure Q5 for your answers and attach it to your answer script.
 - a) i) Give the circuit of a cross-NOR SR flip flop, its circuit symbol and its function table.
 - ii) Give an alternate circuit that has the same function table as part i).
 - iii) Modify the circuit in part i) to give a Gated SR flip flop and give its function table.
 - iv) Figure Q5 a) gives the Gate (enable) and the S and R inputs for a Gated SR flip flop. Synthesize the output Q and indicate the Set, Reset and Hold conditions.
 - v) Give the circuit for a J-K flip flop and its function table.

[5 Marks]

- b) i) Explain what is meant by and the advantages of positive edge and negative edge triggering.
 - ii) State the meaning of a MOD-8 binary counter and list the counting sequence.
 - iii) Give the circuit for a MOD-8 ripple counter with negative edge triggered J-K flip flops and synthesize its output waveforms and the counting sequence in Figure Q5 b).

[5 Marks]

Figure Q3 b)

Index No:

Q5 Answer sheet. Attach this to you main answer script.

Figure Q5 a)

Figure Q5 b)