Paper Title: Strong Hot Carrier Effects in Single Nanowire Heterostructures

Authors' Names :

Shojaei, I.A.¹, Linser, S.¹, Jnawali, G.¹, Wickramasuriya, N.^{1,2}, Jackson, H.E.¹, Smith, L.E.¹, Kargar, F.³, Balandin, A.A.³, Yuan, X.⁴, Caroff, P.⁵, Tan, H.H.⁵, and Jagadish, C.⁵

Authors' Affiliation:

¹Department of Physics, University of Cincinnati, Cincinnati, OH 45221.

²Department of Physics, Faculty of Science, University of Ruhuna, Matara, Sri Lanka.

³Department of Electrical and Computer Engineering, University of California, Riverside CA 92521 USA.

⁴School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.

⁵Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.

Corresponding Author's Email : leigh.smith@uc.edu Published date: 14/08/2019 Publisher: American Chemical Society (ACS) ISSN/ISBN: 1530-6984 DOI: 10.1021/acs.nanolett.9b01345

Keywords: Hot carrier effects, hot phonons, carrier thermalization

Abstract

We use transient Rayleigh scattering to study the thermalization of hot photoexcited carriers in single $GaAs_{0.7}Sb_{0.3}/InP$ nanowire heterostructures. By comparing the energy loss rate in single core-only $GaAs_{0.7}Sb_{0.3}$ nanowires which do not show substantial hot carrier effects with the core-shell nanowires, we show that the presence of an InP shell substantially suppresses the longitudinal optical phonon emission rate at low temperatures which then leads to strong hot carrier effects.