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Temperature is one of the decisive environmental factors that is projected to increase

by 1. 5◦C over the next two decades due to climate change that may affect various

agronomic characteristics, such as biomass production, phenology and physiology, and

yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower,

canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are

widely grown. Specific importance is the vulnerability of oil synthesis in these crops

against the rise in climatic temperature, threatening the stability of yield and quality.

The natural defense system in these crops cannot withstand the harmful impacts

of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a

proper understanding of underlying mechanisms of genotype-environment interactions

that could affect oil synthesis pathways is a prime requirement in developing stable

cultivars. Heat stress tolerance is a complex quantitative trait controlled by many

genes and is challenging to study and characterize. However, heat tolerance studies

to date have pointed to several sophisticated mechanisms to deal with the stress

of high temperatures, including hormonal signaling pathways for sensing heat stimuli

and acquiring tolerance to heat stress, maintaining membrane integrity, production of

heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of

antioxidants, accumulation of compatible solutes, modified gene expression to enable

changes, intelligent agricultural technologies, and several other agronomic techniques for

thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance

and exploring their high expressions greatly impacts their potential application using
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CRISPR/Cas genome editing and OMICS technology. This review highlights the latest

outcomes on the response and tolerance to heat stress at the cellular, organelle,

and whole plant levels describing numerous approaches applied to enhance thermos-

tolerance in oilseed crops. We are attempting to critically analyze the scattered existing

approaches to temperature tolerance used in oilseeds as a whole, work toward extending

studies into the field, and provide researchers and related parties with useful information

to streamline their breeding programs so that they can seek new avenues and develop

guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance

in oilseeds.

Keywords: antioxidants, CRISPR/Cas9 technology, heat stress, oilseeds, omics technology, signaling, smart

technologies, tolerance

INTRODUCTION

Oilseeds are ranked fourth in important food commodities after
cereals, vegetables and melons, and fruits and nuts, and they
occupy about 213 Mha of the world’s arable land (OECD-
FAO, 2020). However, the utilization and demand of oil crops
continuously increases due to high population pressure, vagaries
in dietary choices, cumulative global affluence, and the need
for more renewable bio-products (Villanueva-Mejia and Alvarez,
2017). Vegetable oil is used as a biofuel, so it has a great future as
an essential energy source (Lu et al., 2011). Factually, the primary
sources of vegetable oils are oilseed crops, including rapeseed,
soybean, cotton, peanut, palm oil, and sunflower (Abiodun,
2017), which are used in human diets as salad dressings, oil,
margarine, frying oil, and numerous other products. Due to
their specific chemical and physical properties, vegetable oil
is an important feedstock used to produce multiple industrial
materials, including promising applications such as biofuel
and constituting an alternative to petroleum derivatives (Lu
et al., 2011). Oilseed crops are a significant source of animal
(Ponnampalam et al., 2019) and human nutrition (Rahman et al.,
2018a) and industrial products (Liu et al., 2018a), and biodiesel
production (Mohammad et al., 2018) has been increasing day
by day. The quality and consumption of oilseed crops have been
improved through different genetic engineering techniques (Tan
et al., 2011).

Numerous environmental stresses affecting plant growth
and development have induced grave anxiety in the context
of potential climate change. Across the globe, contemporary
agriculture is facing unprecedented environmental pressure and
stress due to climatic variability (Argosubekti, 2020). Plants’
growth in open environments faces several challenges, including
heat, drought, cold, waterlogging, and salinity (Ashraf et al.,
2018). Elevated temperature is one of the major concerns for
the world as different models have predicted the rise of carbon
dioxide (CO2), causing an increase in the ambient temperature
leading to global warming (NOAA, 2017), which would have
severe consequences on agriculture production systems across
the globe. The Intergovernmental Panel on Climate Change
(IPCC) estimates that the global ambient temperature will
increase by 1.5◦C from 2030 to 2052 (IPCC, 2018). Temperature-
induced heat stress is articulated as the shift in air temperature

exceeding the threshold level for an extended period that could
cause injuries or irreversible damage to crop plants in general
(Teixeira et al., 2013). Therefore, heat stress has proven to be a
great menace and ever-looming threat to fruitful crop production
around the globe (Hatfield and Dold, 2018; Tariq et al., 2018).
The consequences of global climate change and spatial, temporal,
and regional patterns are of considerable concern in agriculture
production (Porter and Moot, 1998). Heat stress speeding up
crop growth and not allowing the proper completion of crop
growth stages results in immature development (Rahman et al.,
2018a), perturbing carbon assimilation. This is an urgent matter,
given that the geographical distribution of plant species depends
to a large extent on their adaptation to different temperature
zones (Keller and Seehausen, 2012).

Additionally, the world population is expected to reach 9
billion by 2050. Agriculture production needs to be enhanced
up to 70% regardless of climate change and its impacts on
agriculture (Rahman et al., 2018b). However, all the growth
stages in plants are affected adversely by heat stress right from
germination to growth and development, reproductive phase,
seed yield (Hasanuzzaman et al., 2013; Ahmad et al., 2016),
and seed quality in oilseed crops (Ahmad et al., 2021a). The
rise in global temperature will ultimately damage the ecosystem
comprehensively (Kanojia and Dijkwel, 2018). Specifically, heat
stress is a severe threat to oilseed crops as it impairs the
production and quality of the yield; for example, the seed
yield decreased up to 39% in camelina and 38% in canola
under elevated temperature scenarios (Jumrani and Bhatia, 2018;
Ahmad et al., 2021b).

The temperature fluctuations have made it imperative to
develop climate-resilient varieties that display better adaptability
for growth under varied environmental conditions (Bhat et al.,
2021). However, achieving this objective will be complicated
by the fact that the performance of oilseeds may be hampered
by environmental impacts related to climate change and the
associated increase in pests and diseases, which are likely to
become more challenging in the near future (Jaradat, 2016;
Rahman et al., 2019). Therefore, hypothetically, several options
can be used to achieve improvements in seed yield and related
traits (either alone or in combination), increase seed oil content,
or reduce seed yield losses due to abiotic stresses, including
high temperature at the sensitive crop stage (Valantin-Morison
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and Meynard, 2008). The resilience of oilseed crops under heat
stress is led by conventional breeding techniques, including
hybridization, artificial selection, and induced mutagenesis;
though, these methods are complicated due to the polyploid
nature of oil crops and require extensive time and labor
investments to accomplish (Yang et al., 2017). In the coming
decades, the growing demand for oilseeds can be achieved
by using advanced molecular breeding techniques such as
complementary breeding tools, which would be very useful to
accelerate all crop improvement programs to produce climate-
resilient crops. While transgenic approaches have so far been
successfully used in oilseeds to improve a wide range of traits
(Meesapyodsuk et al., 2018; Na et al., 2018; Shah et al., 2018;
Kim et al., 2019; Wang et al., 2019), only a small number of
these devices have made it to the market due to poor public
perception as well as the disproportionately high cost and length
of existing regulatory processes (Mall et al., 2018). Therefore, in
this review, we aim to analyze recent results on the response and
tolerance to heat stress at the cell, organelle, and whole plant
level and describe the numerous approaches used to increase heat
tolerance in oilseed crops.

HEAT STRESS AND ITS THRESHOLD IN
OILSEEDS

In general, the threshold level is defined as a point after which
some irreversible changes might occur. Therefore, the threshold
level of heat stress is the moment after which plants lose their
membrane stability. The scorching impact of high-temperature
stress can be defined by the duration of exposure, the intensity
of focus, and the degree of elevated temperature. Temperature
limits of 35◦C are considered heat stressors in tropics and
subtropics (Bita and Gerats, 2013; Awais et al., 2017a; Ahmad
et al., 2021a; Waraich et al., 2021a); however, temperatures above
25◦C are thought to be stressors in rabi (winter) crops (Wahid
et al., 2007; Abbas et al., 2017). The impact of high-temperature
stress and the threshold temperatures of important oilseed crops
at different growth stages is presented in Table 1.

HEAT STRESS SENSING AND SIGNALING

A healthy plant needs a compact and robust network of
interconnected systems that responds rapidly to stimuli, initiates
metabolic responses, and exhibits unique plasticity to adapt
to adverse conditions. Heat stress can affect plant functioning
in various ways by destabilizing membrane fluidity, multiple
proteins, transport systems, enzyme efficiency, RNA stability,
and de-polymerization of the cytoskeleton (Hasanuzzaman et al.,
2013). The adaptation process to stress is complex and occurs
mechanistically through genes, metabolites, and proteins that
are collectively involved in many regulatory pathways. The
initial step of stress perception involves molecular or structural
changes through which a signaling cascade is established, leading
to membrane fluidity responses, adaptive changes in proteins,
and alteration of DNA and RNA sequences (Lohani et al.,
2020). The initial site of stress sensing is mostly the plasma

membrane that stimulates the activation of Ca+2 channels in
the plasma membrane resulting in oscillations of the cytosolic
Ca+2 level. Ca+2 acts as a secondary messenger, and signals rely
on Ca+2 sensors and others such as calcineurin B-like proteins
(CBLs), calmodulin (CaMs), calmodulin-like proteins (CMLs),
calcium-dependent protein kinases (CDPKs/CPKs), G protein-
coupled receptors (GPCR), mitogen-activated protein kinase
(MAPKs), pyrabactin resistance 1-like (PYR/PYL) protein,
matrix metalloproteinases (MMPs), and other enzymes. For
the most part, this mechanism of calcium detection has been
elucidated in several models and also in oilseed plants.

Calmodulin and Calmodulin-Like Proteins
CaM and CML-containing helix-loop-helix EF-hand domains
are a family of Ca2+ sensors in plants and control downstream
targets based on Ca2+ fluctuations (Lohani et al., 2020). Eighteen
CAMTAs have been identified in B. napus, the maximum of any
plant species reported to date (Rahman et al., 2016). Diversified
expression of these BnaCaM/CML genes indicated significant
roles in different tissues in response to stress conditions,
including heat stress. It was critical in the upregulation of heat
stress tolerance (He et al., 2020). These proteins played essential
roles in 13 metabolic processes and cellular responses, including
protein biosynthesis, carbohydrate metabolism, protein folding,
signal transduction, carbon assimilation and assembly, cell
cycle, energy pathway, cell defense and rescue, nitrogen
metabolism, lipid metabolism, transcription regulation, amino
acid metabolism, and secondary metabolite biosynthesis (Wang
et al., 2012).

Calcineurin B-Like Proteins
In contrast to calmodulin, which regulates several proteins,
calcineurin B-like proteins are apparently linked to calcineurin
B-like protein kinases (CIPK) or SNF1-related protein kinases
(SnRK3) (Chen et al., 2012). The structural composition of
calcineurin B-like interacting protein kinases contains an N-
terminal kinase catalytic domain. This junction domain links it to
the highly variable C-terminal regulatory part (Chaves-Sanjuan
et al., 2014). The C-terminal regulatory environment consists of
the FISL motif with a unique 24 amino acid stretch, essential for
the CBLCIPK binding (Albrecht et al., 2001). Yuan et al. (2014)
stated the description of CBL and CIPK genes in B. napus and
revealed the presence of 23 CIPKs and 7 CBLs. Interaction studies
of BnCBL1-BnCIPK6 protein were established by bimolecular
fluorescence complementation (BiFC) and its regulation under
stressed conditions in B. napus (Chen et al., 2012).

Calcium-Dependent Protein Kinase
Calcium-dependent protein kinases act as a third component
of the Ca2+ sensing apparatus in plants, functioning as a
responder to various sensors with the ability to self-modify
authorization through the action of various enzymes (Chen
et al., 2012), making calcium-dependent protein kinases very
important in their dual function of detecting Ca2+ and
responding through phosphorylation events in opposition to
high-temperature signals. There are multiple calcium-dependent
protein kinase essentials to react to specific stress stimuli under
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TABLE 1 | Effect of heat stress in different oilseed crops at different growth stages.

Oilseed Heat stress/duration Impact on plant Growth stage References

Soybean (Glycine max L.) 42/34◦C Length between nodes and internodes decreased. Seed filling Allen Jr et al., 2018

45◦C/6 days Chlorophyll content and yield Reproductive phase Khan et al., 2020

38◦C/8 hours Decreased seed production The appearance of the first

flower

Cohen et al., 2021

40◦C/14 days Reduced seed production and yield Seed fill Djanaguiraman et al.,

2011

42/28◦C Leaf weight, stomatal density, photosynthesis, and

chlorophyll fluorescence

Reproductive phase Jumrani et al., 2017

Sunflower (Helianthus

annuus L.)

25◦C/7 days after first

anthesis to physiological

maturity

Decreased the size of the embryo Reproductive stage Chimenti et al., 2001

38◦C/3 weeks Increased lipid peroxidation and hydrogen peroxide

content

Reproductive stage Razik et al., 2021

35◦C/7 days Decreased the seed weight per plant, decreased oil

content

Seed fill stage/reproductive

stage

Rondanini et al., 2003

33◦C/6 weeks Decreased the leaf growth in sunflower Vegetative De la Haba et al., 2014

Canola (Brassica napus

L.)

35◦C/14 days Reduction in gas exchange and water relations Reproductive stage Ahmad et al., 2021c

37◦C/2 days Seed photosynthesis machinery, impairment of

carbohydrates incorporation

Reproductive stage Huang et al., 2019a

35◦C/7 days Abnormal vegetative growth Reproductive stage Chen et al., 2021a

32◦C/7 days Female reproductive organs are more sensitive than

male reproductive organs

Reproductive stage Chen et al., 2021b

28◦C/10 days Reduced water relation and seed yield Reproductive stage Waraich et al., 2021b

Groundnut (Arachis

hypogaea L.)

34◦C/6 days Reduction in number of pegs and pods Reproductive Prasad et al., 2000

40◦C/6 days 90% reduction in pod formation Micro-sporogenesis Prasad et al., 2001

40◦C The photochemical efficiency of PSII decreased Vegetative Yang et al., 2013

41◦C/18 days Fatty acid profile Flowering Lwe et al., 2020

Cotton (Gossypium

hirsutum L.)

40◦C/6 h Reduction of photosynthetic material, total soluble

sugars, and proline content

Reproductive stage Mohamed and

Abdel-Hamid, 2013

45◦C Reduction in photosynthesis and cell membrane

stability

Reproductive stage Saleem et al., 2021

38 and 45◦C/1 week Increased lipid membrane damage through

increased malondialdehyde (MDA)

Reproductive stage Sarwar et al., 2019

Castor bean (Ricinus

communis L.)

35◦C/13 days Effect biomass production Germination stage Ribeiro et al., 2014

35◦C/7days Heat shock proteins Germination stage Ribeiro et al., 2015

Linseed (Linum

usitatissimum L.)

>30◦C/7 days Pollen viability Reproductive stage Gusta et al., 1997

42◦C/ 1 day Gene expression Reproductive stage Saha et al., 2021

Camelina (Camelina sativa

Crantz)

25–35◦C/3 h in a day Reduced photosynthetic rate Reproductive stage Carmo-Silva and

Salvucci, 2012

35◦C/14 days Reduction in gas exchange and water relations Reproductive stage Ahmad et al., 2021a

35◦C/10 days Oxidative damage Reproductive stage Ahmad et al., 2021b

35◦C/14 days Photosynthetic rate and water status decreased Reproductive stage Ahmad et al., 2021c

32◦C/12 days Reduced growth rate and gas exchange Reproductive stage Waraich et al., 2021a

high-temperature stress. Wang et al. (2018a) also studied the
interaction partners of BnCPK2 using bimolecular fluorescence
complementation and the split ubiquitin-based pairing system
(mbSUS) and revealed a role for BnCPK2 in regulating cell
death and modulating ABA signaling and ROS homeostasis, and
obtained probable interactions with the NADPH oxidase-like

respiratory burst oxidase homolog D (RbohD) (Asano et al.,
2012; Wang et al., 2018b). Under heat stress, GmTCTP and
GmCDPKSK5 were reported in soybean, and their interaction
works in response to heat stress in developing soybean seed
(Wang et al., 2017). The burst of cytosolic Ca2+ or CDPK
stimulates respiratory burst oxidase homolog D (RBOHD),
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another plasma membrane-located protein with a role in
the hydrogen peroxide generation through NADPH oxidase
phosphorylation. The downstream signal path of RBOHD is
involved in heat shock responses which consist of specific
mitogen-activated protein kinases (MAPKs), HSFs, and MBF1c.

G Protein-Coupled Receptors
G protein-coupled receptors act as plasma membrane-localized
receptors in plants that perceive different stress signals and play
an essential role in the response of plants under abiotic stresses
(Choudhury et al., 2011). These receptors bind to other ligands
to sense and transmit the information related to extracellular
stress stimuli. Ligand binding to G protein-coupled receptors
causes conformational deviations and facilitates the exchange of
GTP for GDP, leading to the activation of heterotrimeric guanine
nucleotide-binding proteins (G proteins). The association of
GPCRs and ligand-bound G proteins activates small Ras-related
GTP-binding proteins in canola, which subsequently sets in
motion a Ca2+ inositol triphosphate (IP3)-mediated signaling
pathway under abiotic stress (Shokri-Gharelo and Noparvar,
2018; Nongpiur et al., 2019). Gao et al. (2010) examined B. napus
and revealed the role of BnGB1 in signal pathways and could
also improve the defense system of plants under environmental
stresses (Gao et al., 2010).

Mitogen-Activated Protein Kinase
Signaling Cascade
The mitogen-activated protein kinase signaling cascade
assimilates and channels signal transduction to express the
stress-responsive genes facilitated through phosphorylation
and acts as and is involved in converging points in the
mechanism of abiotic stress tolerance (Chinnusamy et al.,
2004). Mitogen-activated protein kinase signaling cascades
are comprised of MAPK kinases (MAP2Ks, MAPKKs, MEKs,
and MKKs), MAPKK kinases (MAP3K, MAPKKKs, and
MEKK), andMAPKs (MPKs). Mitogen-activated protein kinases
function as on-off signaling switches aiming at downstream
targets through phosphorylation. Consecutive phosphorylation
and de-phosphorylation of threonine or serine residues by
MAPKKKs command the activation of MKKs and then tyrosine
and threonine residues to activate MPKs (Sun et al., 2014).
Then, the activated terminal MAPKs ensue forward with the
signal transduction by phosphorylation-arbitrated control of
transcription enzymes or factors. However, Liang et al. (2013)
identified 12 MPK and 7 MKK members. Sun et al. (2014)
identified 66 MAPKKK genes in B. napus. The expressed
BnMAPKKK genes were regulated by high-temperature stress
and hormone-induced stress stimuli by transmitting external
signals to the nucleus via sequential phosphorylation. Mitogen-
activated protein kinases act as a signaling molecule sensing and
modulating terminal heat stress, which subsequently controls the
plant response to heat stress (Krysan and Colcombet, 2018).

The Pyrabactin Resistance 1-Like Protein
The pyrabactin resistance 1-like protein (BnPYL1-2, BnPYR1-3,
and BnPYL7-2) is an essential regulatory constituent of abscisic
acid signaling networks in B. napus (Di et al., 2018). Abscisic

acid is sensed by the ABA receptor (pyrabactin resistance 1-like)
in the ABA core signal transduction pathway (Ma et al., 2009;
Miyazono et al., 2009). When PYR/PYL is bound by ABA, they
inhibit the enzymatic activity of protein phosphatase 2C (PP2C),
leading to the release of serine/threonine-protein kinase SRK2
(SnRK2) (Ma et al., 2009). Serine/threonine-protein kinase SRK2
is activated through the activation of loop auto-phosphorylation
(Soon et al., 2012), and started by phosphorylate transcription
factors, like the abscisic acid-responsive element binding factor
(ABF), which is essential to activate ABFs (Kobayashi et al., 2005).
These activated abscisic acid-responsive element binding factors
enter the nucleus to upregulate the expression of downstream
abscisic acid-induced stress-associated genes.

Matrix Metalloproteinases
Matrix metalloproteinases were found in humans and are a
family of zinc-dependent endopeptidases, but a number ofmatrix
metalloproteinases are also located in plants. Speculated results
showed that plant matrix metalloproteinases played a role in the
growth and development of plants and their response to different
stresses. Still, there is a dire need to explore their biological
functions (Ratnaparkhe et al., 2009). Pak et al. (1997) revealed
the first high plantmatrixmetalloproteinases (Gm1-MMP) which
were found to play a significant role in the expansion of soybean
leaf. Heat stress-responsive matrix metalloproteinases (Gm2-
MMP) confer heat stress tolerance by regulating the growth and
development of plants which may help researchers to understand
the biological functions of the matrix metalloproteinases family
in plants (Liu et al., 2017, 2018b).

Phytochrome A and Phytochrome B
Phytochromes A and B are the most abundant phytochromes in
de-etiolated and dark-grown seedlings. PhyB is present in two
alternative isoforms: the active Pfr, with a maximum absorbance
in the far-red region, and the inactive Pr, which absorbs
maximally at the red region (Sakamoto and Kimura, 2018).
Phytochrome B mediates signaling pathways to improve plant
resistance to environmental stresses by reducing transpiration
rate, improving the antioxidant defense system, expressing genes
related to plant stress acclimation, and protecting pigments
(Junior et al., 2021).

Heat Shock Factors and Heat Shock
Proteins
Heat stress activates all the plasma membrane sensors and
generates signals from different transcriptional regulators of HSR
(heat shock response) (RbohD, MBF1c, and HSRs) through
different kinases. The chloroplast is projected as a heat sensor
as its translation ability of proteins triggers retrograde signals
to heat receptive genes, which are HsfA2-dependent themselves
(Liu et al., 2015). HSFs (heat shock transcription factors)
are activated by calmodulin, Hsp90, and mitogen-activated
protein kinases. Signal transduction includes various phases like
activation of HSFs and their expression, which leads to the onset
of thermo-tolerance (Saidi et al., 2011).

A prominent event is heat-tolerance acquisition,
transcription, and translation of heat shock factors (HSFs)
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and heat shock proteins (HSPs). Consequently, the constitutive
over-expression of these genes and proteins is well-established
to enhance heat tolerance (Vierling, 1991). Heat shock factors
(HSFs) and dehydration responsive element-binding (DREB)
protein families were also identified in Brassica juncea (Bhardwaj
et al., 2015). The promoter regions of the soybean HSFs
contained cis-elements that likely participate in drought, low
temperature, and ABA stress responses. GmHsp90A2, GmRAR1,
GmSGT1, GmSBH1P, and GmSBH1 are essential chaperones
of the protective stress response in soybean (Chen et al., 2019;
Huang et al., 2019b), while LusHSF responds in linseed (Saha
et al., 2019). These regulators play their role in making the
interaction between the MBF1c ethylene activated pathway and
HSP allied signaling. This coordination and members of the
DREB family facilitate the responses against heat stress. The
plant’s highly conserved heat stress response has four putative
sensors that initiate the heat stress response (Mittler et al.,
2012). GmHsp90A2 was identified as a positive regulator under
heat stress in soybean, which interacted with GmHsp90A1 and
exhibited increased tolerance to heat stress through higher
chlorophyll and lower malondialdehyde (MDA) contents in
plants (Huang et al., 2019b). High temperature can significantly
affect gene expression during flowering as thermo-sensitive
genic male sterility (TGMS) provides an adequate foundation
for male fertility research in B. napus. We also found that
transcription factor box transcription factor (MADS), Nuclear
transcription factor Y (NFY), heat shock transcription factor
(HSF), MYB/C, and WRKY might play a crucial role in male
fertility under the high-temperature condition (Gao et al.,
2021). BnaMYBs improve tolerance to cold, heat, drought, and
salinity by regulating ROS defense genes (Chen et al., 2016;
Hajiebrahimi et al., 2017). Demirel et al. (2014) studied 25 ESTs
(express sequence tags), out of which 16 were homologous to
known genes. The genes, namely RPS14, CTL2, LSm8, ABCC3,
and CIPK, were downregulated, while FPGS, TH1, GhHS128,
GhHS126, and IAR3 were upregulated, but expressions of
psaB-rps14 and PP2C were not altered, owing to short-term
heat stress in cotton. Hence these putative sensors activate
heat stress-responsive genes to enhance thermo-tolerance, but
the hierarchical order and relation between these pathways
remain unclear.

The most recognized putative heat sensors in the plasma
membrane are Ca2+ channels known as cyclic nucleotide gated
calcium channels (CNGCS), a nucleosome containing histone
variant (H2A.Z), and unfolded protein sensors; (a) ER-UPR and
(b) Cyt-UPR as depicted in Figure 1. In a calcium signaling
pathway, calcium interacts with the number of signaling
molecules inside the cell to trigger the heat stress response. To
operate HSPs expressions, Ca2+ interacts with HSFs (heat stress
transcription factors), via CBK (Ca2+/CaM3 binding protein
kinases) and CaM3 (calmodulin 3). Ca2+ is required for the
activity of RbohD against ROS stress (respiratory burst oxidase
homolog D) or CDPKs (calcium-dependent protein kinases).
It can repair the membrane with synaptotagmin A (SYTA)
(Sajid et al., 2018). Calcium-dependent protein kinases (CDPKs),
identified only in plants, are a vital regulatory protein decoding
calcium signals activated by various environmental stimuli.

However, only CDPK 8 from the CDPK family has been reported
to have a role in abiotic stress response via scavenging H2O2

by catalase-3 (Zou et al., 2015). The expressions of other HSPs
and HSFs initiated by Ca2+ regulate master HSPs and HSFs and
trigger the enzyme activity to prepare the plant for heat tress
tolerance, as shown in Figure 2. An alternative complementing
heat-sensing mechanism proposes that the primary temperature
sensor of the cell is located in the plasma membrane and that
Ca2+ permeable channels act as the earliest temperature-sensing
component of the plant heat stress response (Saidi et al., 2009).
Heat stress activates cell sensors, and among those, plasma
membrane sensors activate calcium channels which causes the
inward flux of calcium.

HEAT STRESS AT GERMINATION AND
VEGETATIVE STAGE

The germination and emergence ratio of a crop is the critical
phenomenon to get the optimum planting density and crop
performance in the field. High temperature resulted in poor
germination and poor stand establishment in the Indian Brassica
germplasm (Azharudheen et al., 2013). Recently, induction of
varying degrees of secondary dormancy at sub and supra-optimal
temperature regimes were detected among rapeseed cultivars
(Gorzin et al., 2020). Heat stress damages plant morphology
and is manifested by symptoms on vegetative parts such as
leaf sunburn, scorching effects of heat on leaves, twigs, buds,
branches, stems, and fruits, reduction in root to shoot ratio,
affects plant meristems, and leaf senescence (De la Haba et al.,
2014) with subsequent abscission and ultimate reduction in seed
yield (Bita and Gerats, 2013). As temperature increases, the
plant development builds up to a certain extent and decreases
afterward (Wahid et al., 2007). The impaired growth and
development symptoms were observed in Brassica (Angadi et al.,
2000), soybean (Piramila et al., 2012), and linseed (Gusta et al.,
1997) under high-temperature stress. Ahmad et al. (2021a)
reported that high temperature (35◦C) during anthesis reduces
chlorophyll content, photosynthetic rate, and leaf water status in
camellia and canola genotypes, leading to reduced plant growth
and seed yield. Canola growth was negatively affected above 28◦C
by reducing plant height, root length, and biomass accumulation
due to impaired photosynthetic rate and stomatal conductance
(Waraich et al., 2021b). The consequences of heat stress for plant
growth and development are presented in Figure 3.

HEAT STRESS AT REPRODUCTIVE STAGE

All the plant growth stages could be poorly affected by thermal
stress, but the biggest concern of the agricultural world is the
reproductive phase. The central part of the world’s food supply
comes from the flowering plant through sexual reproduction.
The first few hours of the reproductive phase are important
in fertilization, as a small spell of heat stress occurs, which
can be fatal to the whole process (Xi, 1991). Similarly, the
reproductive stage is considered the most sensitive stage to be
affected by heat stress in Brassica (Young et al., 2004; Ihsan
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FIGURE 1 | Plant thermo-sensors and main signal transduction pathways implicated in heat stress response and thermo-tolerance (modified from Bokszczanin and

Fragkostefanakis, 2013).

et al., 2019). The disruption of the plant’s metabolic functions
due to high temperature is associated with a consequent
reduction in light interception due to a shortening of the
growth phases in terms of both size and time. It also has an
adverse effect on carbon assimilation, leading to the formation
of small and deformed organelles (Maestri et al., 2002). A
very fatal heat stress response has been observed in male and
female reproductive parts, which impairs pollen viability and
germination, inhibits pollen tube growth, impairs receptivity
and function of the stigma and ovary, causes fertilization
arrest, inhibits embryogenesis, impairs egg viability, and induces
ovarian abortion and poor seed set. Brassica plants have shown
a poor seed set when exposed to heat stress (Angadi et al.,
2000; Morrison et al., 2016). It has been observed that late
flowering to early seed setting is the most susceptible growth
stage to heat stress in groundnut (A. hypogaea) (Prasad et al.,
1999). One more example of this occurs in cotton. In this case,
the most heat-sensitive stages in cotton are pollen and pollen
tube development and fertilization in reproductive growth.
High-temperature stress reduces the number of sympodial and
monopodial branches, number of bolls, seeds per boll and
their weight, and the boll development process (Ekinci et al.,
2017; Rahman et al., 2019). The canola grain yield drastically
reduced when exposed to high night temperatures during

the reproductive stage (Pokharel et al., 2020; Chen et al.,
2021b).

OIL QUANTITY AND QUALITY

Among the plant reserves, oils are the most energetic reserves,
providing humans with many essential fatty acids and calories
that must be part of the daily diet. It is synthesized in plastids,
oil bodies, and triacylglycerol (TAG) molecules that accumulate
outside the plastids in the endoplasmic reticulum (ER). Exposure
to heat episodes has detrimental effects on cell organelles
(plastids, ER, and oil bodies), it also induces the denaturation of
enzymes, which could lead to the impairment of the mechanism
of oil synthesis (Haung et al., 2019). Although under heat
stress conditions, the full mechanism of oil accumulation and
photosynthesis in B. napus remains unclear, it is known that
under these conditions, the sugar content increases because seed
oil accumulation is reduced, leading to impaired carbohydrate
incorporation into TAG (Haung et al., 2019). Heat stress
lessens the role of a number of sugar transporter genes,
resulting in the imperfect incorporation of carbohydrates into
triacylglycerol’s units. Taken together, the results confirmed
that perturbations in the mechanism of seed photosynthesis,
impaired integration of carbohydrates into triacylglycerol, and
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FIGURE 2 | Membrane heat sensors and signal transduction pathways through various receptors across the plasma membrane.

transcriptional deregulation of the BnWRI1 pathway due to heat
stress are themain reasons for less oil accumulation (Haung et al.,
2019). The relationship of oil concentration with temperature is
linear. As temperature increases, the concentration of oleic acid
increases linearly, and at the same time, linoleic acid decreases
linearly (Thomas et al., 2003; Lanna et al., 2005).

Additionally, linoleic and linolenic acids, isoflavones content,
and iodine number also decreased. All these factors added to
reducing oil content in soybean seeds (Lanna et al., 2005). The
oil yield showed a linear correlation to thousand seed weight,
pod length, and seeds per pod of the Brassica species accessions
in tropical environments, especially under high-temperature
regimes indicating a promising potential as alternative oilseed
crops for biodiesel production in tropical conditions (Bassegio
and Zanotto, 2020).

PHYSIOLOGICAL AND METABOLIC BASIS
FOR REPRODUCTIVE FAILURE UNDER
HEAT STRESS

The vulnerability of plants to heat stress varies with the
different growth stages. At the same time, the reproductive
phase is also susceptible due to its sensitive organelles that
surrender to heat changes. Heat stress reduces the plant’s

photosynthetic capacity, resulting in a lack of resources for
the reproduction process in the genotypic and reproductive
tissues (Ahmad et al., 2021a). Some causes of reproductive
failure and male sterility in plants are related to the genes
responsible for the tapetum and pollen functioning, which
are altered by heat stress occasioning their degradation.
Carbohydrate metabolic enzymes, including sucrose synthase,
vacuolar inverses, and sugar transporters, are influenced by
heat stress reducing the pollen viability (Zandalinas et al.,
2018). The accumulation of soluble carbohydrates in pollen is
reduced by low sucrose-starch turnover due to downregulation
of the enzymes sucrose synthase and invertase (Hedhly, 2011).
Under heat stress, cell proliferation arrest produces changes in
chloroplast development, abnormalities in mitochondria, and
distended vacuoles (Sakata et al., 2010; Wani and Kumar, 2020).
In stigmatic tissues and pollen grains, carbohydrate accumulation
is disrupted due to changes in the partitioning of assimilates
between the apoplast and symplastic phloem filling, which
impairs pollen grain viability. High-temperature stress leads to
inhibition of starch production in oilseeds (Thuzar et al., 2010),
associated with seed setting and oil accumulation under heat
stress. The drastic reduction in grain weight was directly linked
with electrolyte leakage and membrane damage resulting in low
seed yield under terminal heat stress in B. juncea (Kavita and
Pandey, 2017).
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FIGURE 3 | Impact of heat stress on physiological, biochemical, growth, and yield responses in plants.

PHYSIOLOGICAL RESPONSES

Initially, heat stress damages the chloroplast proteins complex
and inhibits the enzymatic activity (Ahmad et al., 2010;
Hasanuzzaman et al., 2020a). Under high-temperature
environments, the chloroplasts are unfolded and vulnerable
to rapid degradation of chloroplast proteins (Dutta et al., 2009),
particularly one of the significant core subunits in photosystem II
(PSII), protein D1, is the most vulnerable to heat stress damage.
The impact of heat stress at the cellular level is devastating
because it damages membrane stability, inactivates enzymes
in chloroplasts and mitochondria, also promotes protein and
enzyme degradation, decreases carbohydrate and protein
synthesis, reduces carbon metabolism, and alters microtubule
organization by expanding and elongating cells, ultimately
damaging the cytoskeleton (Bita and Gerats, 2013). Heat stress
affects all the physiological processes, but the most sensitive
among all is photosynthesis (Crafts-Brandner and Salvucci,
2002; Hasanuzzaman et al., 2020b) as shown in Figure 4. The
effect of elevated temperatures on photosynthesis can be seen
in several instances. Heat disrupts the integrity of the thylakoid
membrane and damages photosystems I and II as well as the
oxygen complex, affecting phosphorylation (Rexroth et al.,
2011). PSII is the most sensitive photosystem (Bibi et al., 2008);
thus, severe thermal damage to PSII results in disrupting electron
transport and ATP synthesis during the photosynthetic process
(Wang et al., 2018a).

ROS production has detrimental effects on photosynthetic
machinery and PSII (Bita and Gerats, 2013; Elferjani and

Soolanayakanahally, 2018). Leaf chlorophyll contents have a
negative relation with heat stress resulting in less photosynthesis
at 38/32◦C that lowers the chlorophyll content leading to a
decrease in the sucrose content. In addition, it suppresses
the process of carbon fixation in photosynthesis by reducing
chlorophyll content (Liu and Hang, 2000; Ahmad et al., 2021a),
reducing the quantum yield of photosystem II (Bibi et al.,
2008), reducing e-transport (Wise et al., 2004) due to leakage
in the thylakoid membrane, inactivating rubisco activation,
and increasing cyclic photophosphorylation. Heat stress affects
the plant in many ways. For example, excess water can also
be siphoned off due to increased transpiration, leading to
reduced plant turgidity and disruption of physiological processes
(Tsukaguchi et al., 2003). Heat stress affects water relations
in the plant by affecting osmotic adjustment due to the poor
photosynthetic capacity of the plant (PSII is the most sensitive
part), reducing sugar content, decreasing the osmotic potential
of leaves, and increasing transpiration rate (Hemantaranjan et al.,
2018).

HEAT STRESS AND
PHYTOHORMONES/SIGNALING
MOLECULES

The plant faces several external and internal stimuli during
its lifespan. Therefore, they need to regulate their growth and
development in reaction to these stimuli (Li et al., 2021a). A
small group of signaling molecules known as phytohormones

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 767150

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahmad et al. Heat Stress Tolerance in Oilseed Crops

FIGURE 4 | Impact of heat stress on photosynthesis and the photosynthetic system (conceived from Nadeem et al., 2018).

(abscisic acid, brassinosteroids, cytokinin, salicylic acid,
jasmonate, and ethylene) present in small quantities in the
cell and help to mediate the response to stimuli. Although
ABA is the primary regulator of the response to abiotic
stress among phytohormones, increasing evidence points
to the involvement of other phytohormones. The nature of
phytohormone-mediated regulation of heat stress tolerance is a
complex phenomenon, as they can act either directly respond or
orchestrate the response to high-temperature stress by engaging
other phytohormones, including reactive oxygen species, MAP
kinases, soluble sugars, and secondary messengers through
crosstalk networks (Smékalová et al., 2014; Ljung et al., 2015).
The role of phytohormone-induced regulation of stress tolerance
has been extensively reviewed (Peleg and Blumwald, 2011;
Balfagón et al., 2019). These phytohormones play a crucial
role in acclimatizing plants to rapidly changing environmental
conditions by regulating transitions between sources and sinks,
growth and development, and well-known nutrient distribution
(Nazar et al., 2017). Plant hormones mediate soybean plant
tolerance to high-temperature stress by enhancing plant growth
and development through regulation of the antioxidant defense
system, interaction with plant hormones, and reorganization of
biochemical metabolism (Imran et al., 2021).

Plants are sessile organisms and their survival in elevated
temperature depends upon various factors. One of the most vital
substances used in response to external stimuli is endogenously
produced phytohormones, which regulate different molecular
and physiological reactions (Li et al., 2021b). Phytohormones
might act where they were synthesized or can be transported

wherever needed (Peleg and Blumwald, 2011). Some of the
critical roles phytohormones play to face abiotic stress tolerance
include, for example, the increment in the synthesis of cytokinins
(CKs) under water stress conditions for better functioning.
Melatonin supplementation regulates the plant defense
system by improving the activity of antioxidants (superoxide
dismutase, ascorbate peroxidase, peroxidase, and catalase) and
their genes (GmPOD1, GmSOD, GmAPX, and GmCAT1),
biochemicals (phenolic substances, flavonoids, and proline),
and polyamines (spermine, spermidine, and putrescine), and
also by downregulating stress hormone biosynthesis including
abscisic acid content, downregulated gmNCED3 (abscisic acid
biosynthesis gene), and upregulated catabolic genes (CYP707A1
and CYP707A2) in soybean. In addition, melatonin induced the
expression of heat shock transcription factor (gmHsfA2), heat
shock protein 90 (gmHsp90), and indicated detoxification of
reactive oxygen species through the H2O2-mediated signaling
pathway (Imran et al., 2021). Kazan and Manners (2013)
delineates the evolutionary role that a second phytohormone
auxin (IAA) plays in stress tolerance because of its biosynthesis,
signaling, and transportation apparatus present in the cell; some
other studies found evidence of the role of gibberellins (GAs) to
ameliorate adverse circumstances, for instance Colebrook et al.
(2014) found that gibberellins role in abiotic stress tolerance has
been increasing with time; another phytohormone that takes part
in the response to abiotic stress is abscisic acid (ABA), the level of
ABA upsurges in plants under unfavorable conditions modifying
gene expression and activating signaling pathways (O’Brien and
Benková, 2013) as shown in Figure 5. Ethylene (ET) also plays
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FIGURE 5 | ABA signaling pathway in oilseed crops.

FIGURE 6 | Ethylene signaling pathway under heat stress.

an important role in the acclimatization in adverse conditions
(Gamalero and Glick, 2012) and also modulates gene expressions
as shown in Figure 6 (Klay et al., 2014). Jasmonates (JAs),
strigolactone (SL), and salicylic acid (SA) govern growth and
development and fruit ripening in abiotic stresses (Rivas-San
Vicente and Plasencia, 2011); jasmonate (JAs) regulates plant
defense to stressful conditions, and brassinosteroids (BRs)
are an essential phytohormone that have a role in the heat
stress tolerance in plants (Bajguz, 2011; Janeczko et al., 2011).
Endogenous abscisic acid concentration was significantly
elevated by heat stress (45◦C) alone and doubled by heat stress
plus brassinosteroids. These results suggested that the well-
known enhancement of heat stress tolerance was obtained due
to brassinosteroid-induced elevation in endogenous abscisic acid
concentration (Kurepin et al., 2008). Jasmonate is required to

regulate specific transcriptional responses unique to the heat and
high light stress combinations in the chloroplast, especially D1
protein in PSII (Balfagón et al., 2019). All these are key players
to provide developmental plasticity in plant growth. The role
of phytohormones in oilseed crops also extraordinarily starts
at the biosynthesis of oil content using a signal transduction
mechanism and has a role in the performance of many growth
and developmental processes. It is well-documented that
exogenous application of phytohormones mitigates the negative
effects of heat stress in canola (Kurepin et al., 2008). Similarly,
supplementation with brassinolide at the seedling stage can
enhance thermo-tolerance by increasing endogenous ABA levels.
However, treatment with 24 epibrassinolides also increases
heat stress tolerance (Kagale et al., 2007). qRT-PCR analysis
showed that the expression levels of gibberellin biosynthesis
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pathway genes (GmGA3ox1, GmGA3ox2, and GmGA3) and
auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5,
and GmYUCCA7) significantly increased upon interaction
with high temperature and supplementation of gibberellins and
auxin, which improved the performance of soybean plants by
improving hypocotyl elongation under high-temperature stress
(Bawa et al., 2020).

MECHANISM OF HEAT STRESS
TOLERANCE IN PLANTS

The global climate is changing due to various anthropogenic
factors that influence temperature regimes (Ahmad et al.,
2020). There are several mechanisms, including phenological,
physiological, morphological, and biochemical mechanisms,
that plants exhibit for their survival under high-temperature
conditions (Ghaffar et al., 2020) since plants are sessile in
nature, which limits them to a specific range of responses to
external stimuli that vary at different stages of growth and
have flexible relevance to physiological and cellular mechanisms
of protection and acclimatization (Ahmad et al., 2021a). The
prime stress indications (e.g., variations in temperature, ionic
effects, osmotic effects, membrane uncertainty) would activate
the signaling and transcript control that triggers the mechanism
of stress responses to restore the homeostasis and repair the
plasma membrane. Bohnert et al. (2006) examined cell death
due to devastation in the structural and functional proteins and
irreversible damage in the homeostasis of the cell because of
an insufficient response at different steps of signaling and gene
expression processes. Understanding the various mechanisms
of the reaction of plants to stress and their importance in
the acquisition of thermo-tolerance is of great importance.
Under heat stress, plants activate a variety of mechanisms,
including accumulation of metabolites (HSPs, osmoprotectants,
antioxidants), ion carriers, late embryo abundant proteins, free
radical scavengers, transcriptional control, and factors involved
in signaling, which are fundamentally very important for
stress alleviation (Bokszczanin and Fragkostefanakis, 2013). By
observing the heat, signaling, and metabolite production that
help the plant survive adverse conditions, a chain of mechanisms
and variations began. The impacts of heat stress are evident
at different stages and in aspects such as plasma membrane
fluidity, biochemical mechanisms in cytoplasmic organelles, and
cytosol (Sung et al., 2003). The primary sight of damage resulting
from heat stress is plasma-lemma which results in damage to
the lipid bilayer plasma membrane. This implies the initiation
of cytoskeleton reorganization and Ca2+ influx, leading to the
regulation of CDPK and MAPK.

Heat stress results in the production of ROS in various
organelles (peroxisomes, chloroplasts, and mitochondria), which
are important in the signaling mechanism, activation of
antioxidant enzymes, HSPs, and restoring the balance of
osmolyte concentration that maintains the water balance of
the cell (Bohnert et al., 2006). Plants can adopt several stress
mechanisms, with the ability being associated with acquiring
thermo-tolerance (Maestri et al., 2002). During conditions

of heat stress, HSP chaperones play essential roles in signal
transduction and gene expression, as well as in the regulation of
cellular redox balance, protection of photosynthesis, protein and
membrane repair, osmolyte production (Diamant et al., 2001),
and antioxidant production. The response to heat shock can be
controlled at the transcriptional and translational levels. The cis-
acting DNA sequence, heat shock element (HSE), and LusHSF
genes have been found to play an important role in heat-induced
transcription (Nover and Baniwal, 2006; Saha et al., 2019).
During heat episodes, a protective mechanism is also associated
with increased thermo-tolerance of the photosynthetic apparatus
(Hemantaranjan et al., 2014). Consequently, the induction of
thermo-tolerance for plant protection under such conditions is
directly linked to the ability to detoxify and scavenge radical
ROS, leading to plant thermostability (Hameed et al., 2012).
Although many attempts have been made, Iaccthere is still very
little literature on ROS production and scattering. The saturation
of membrane lipids under heat stress tolerance increases the
content of trans-3-hexadecanoic acid (among phospholipids)
and linolenic acid (among galactolipids). However, it is still
unclear whether either low membrane lipid saturation or
higher membrane lipid saturation is beneficial in mitigating
heat stress (Klueva et al., 2001). Total soluble proteins play
a vital role in improving heat stress tolerance in oilseed
crops, including camellia and oilseed rape by improving plant
water relations and gas exchange properties that help improve
vegetative and reproductive growth under high heat stress
(Ahmad et al., 2021b,c). During heat stress, the photosynthetic
electron transport chain is protected by the localization of
LMW-HSPs with the chloroplast membrane (Heckathorn et al.,
1998). Variations in expressions of genes are a vital part of the
heat stress tolerance response. Yang et al. (2006) observed a
rapid shift of gene expression under heat stress in inhibiting
HSP complement expression. The splicing of many mRNAs
could be restrained by heat stress. Unfavorable high-temperature
heat stress conditions may also destabilize the non-heat stress-
induced proteins encoded by mRNAs. Investigations show that
the presence of introns in the HSPs is why themRNAs were sliced
properly compared to proteins with no introns. Accordingly, a
number of genes were identified to confer thermo-tolerance in
plants, i.e., regulated glutaredoxin, ascorbate peroxidase, heat
shock factors, heat shock proteins, and downregulated FAD3-2
and FAD7 to improve resistance in plants against heat shocks
induced by high-temperature stress (Murakami et al., 2000; Lwe
et al., 2020). However, further studies are needed to elucidate
the mechanism of professional transcriptional alteration and
transformations of HSP-encoding mRNA under lethal high
temperatures. Although, Ca2+ acts as a regulator of many
physiological and biochemical processes in response to high-
temperature stress in plants (Yang et al., 2013), transient elevation
of free Ca2+ in the cytoplast can be detected in plants in response
to various stresses, such as high temperatures. The fact that Ca2+

improves plant resistance has been linked to the maintenance
of higher photosynthetic rates under stress, histone sensors,
and unfolded protein response sensors in the endoplasmic
reticulum (ER), RBOHD, plasma membrane channels (which
transiently open and induce Ca2+ entry flux into the cytosol),

Frontiers in Plant Science | www.frontiersin.org 12 December 2021 | Volume 12 | Article 767150

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahmad et al. Heat Stress Tolerance in Oilseed Crops

phytochrome B (Mittler et al., 2012; Vu et al., 2019), PSII reaction
center stability, ROS detoxification, and high light-induced
Ca2+ influx into chloroplasts, which regulates antioxidant
processes to mitigate high temperature-induced oxidative stress
(Yang et al., 2013; Gilroy et al., 2016). For example, the
superoxide anion, the initial product of photoreduction of O2,
is dismuted by superoxide dismutase to H2O2 and O2 (Noctor
and Foyer, 1998). H2O2 is then converted into water by ascorbate
peroxidase (APX). Furthermore, exogenous Ca2+ could improve
the non-photochemical quenching of chlorophyll fluorescence
(Ai et al., 2007), protecting the photosynthetic machinery from
inactivation and damage caused by excess irradiance (Horton
et al., 1996). In addition, a class of HSF family TFs (e.g., HSFA1s)
and the Ca2+ /CaM signal transduction pathway regulate plant
responses to high temperatures (Yang et al., 2013; Cortijo et al.,
2017; Ohama et al., 2017). Pretreatment of plants with hydrogen
peroxide or phytohormones increases the expression of genes
encoding enzymes such as catalase, which scavenges ROS, and
redox regulators such as glutaredoxin, which improve plant
temperature tolerance (Wang et al., 2014; Devireddy et al., 2021).

Acquired Thermo-Tolerance
In plants, the capability to survive under lethal high-temperature
stress following adaptations with sub-lethal high temperature
or the capability of a living thing to survive in a severely high
temperature is referred to as acquired thermo-tolerance (Jagadish
et al., 2021). Like other organisms, plants cope with severe
high temperatures by acquiring thermo-tolerance within a few
hours; they also have an inherent characteristic to survive in
lethal temperatures (Lin et al., 2014). Stress memory is defined
as the process of storage and retrieval of information acquired
during initial exposure to stress (Crisp et al., 2016; Hilker
and Schmülling, 2019). Naturally, plants face different gradual
temperature ranges and acclimatize to these otherwise lethal
ranges, which is an independent cellular phenomenon of thermo-
tolerance acquisition that results from the pretreatment under
high temperature for short periods correlated with a higher
activity of antioxidant enzymes (Collado-González et al., 2021).
This acquisition of thermo-tolerance is used as a yardstick to
evaluate the thermo-tolerant and thermo-sensitive genotypes of
oilseeds like groundnut and sunflower (Awais et al., 2017b),
and elaborate the functions of different stress genes. Thermo-
tolerance acquisition is not a single-step phenomenon; rather,
it has different phases. Certain factors affect the acquisition
of thermo-tolerance like growth stage, acclimation methods,
and crosstalk between acquired thermo-tolerance and stress
tolerance. These key factors protect the cells from the detritus
impacts of heat stress in acquired thermo-tolerance (Jespersen,
2020). A piece of useful information regarding heat stress effects
can be revealed by the inspection of all the hostile effects
instigated by extreme heat as the responses of thermal stress in
the plant are related to other types of stress (Rahaman et al.,
2018). The HSRs, referred to as a transitory restructuring of
gene expressions, are a preserved biological response of different
organisms and cells to eminent temperatures (Schöffl et al.,
1999). The upregulated genes under high-temperature stress
encoded many heat shock factor (HSF)-like proteins such as

HsfB2A (Bra029292) and heat shock proteins (HSPs), including
high molecular weight HSPs. Heat stress also upregulated some
components of HSR, including ROS-scavenging genes such as
protein kinases, glutathione peroxidase 2 (Bra022853, BrGPX2),
and phosphatases. At the same time, CYP707A3 (Bra025083,
Bra021965) was involved in membrane leakage, but many
transcription factor (TF) genes, including DREB2A (Bra005852),
were involved in the acquisition of heat stress tolerance in
bryophytes (Dong et al., 2015). HSP is a vital apparatus to
examine the molecular mechanism of heat stress tolerance and
gene-expression regulation in plants. The total temperature
needed for the initiation of HSR accords with the optimum
temperature of a specific species, which is 5–10◦C more than
normal thermic conditions. It involves the education of HSPs
and, therefore, a higher level of thermo-tolerance acquisition.
In the transitory synthesis of HSPs, results showed that the
signal that triggers the reaction is either lost, deactivated, or
not documented (Burke, 2001; Lwe et al., 2020). The direct
role of HSPs in thermo-tolerance is challenging to determine,
but its involvement in acquired heat tolerance is a logical
model (Burke, 2001). So, the acquired thermo-tolerance in plants
obtained through natural phenomenon prompted by a gradual
acquaintance to heat periods or biological synthesis of pertinent
compounds, although cost-intensive, is a vital and hypothetically
a critical strategy. This mechanism is primarily associated
with the display of HSR and acquired by the restructuring
of gene expression, letting plants survive under the sub-lethal
temperature. Edelman et al. (1988) performed studies in soybean
seedlings and revealed that as the temperature reached 40◦C,
the protein pattern shifted from normal proteins to HSPs to
acquire thermo-tolerance. Remarkably, a minimal but significant
level of acquired thermo-tolerance can be achieved in plants by
inducing the expression of a small number of genes regulated
by other transcription factors, such as the NAC069 TF (Wang
et al., 2016a), MYB-related genes (FAR1, bZIP, and mTERF)
(Zhou et al., 2016), MADS-box, MYB41 (Wu et al., 2018), NAC
(Saha et al., 2021), and CWM-related genes (Wang et al., 2016b).
Kinases including MAPKKK (mitogen-activated protein kinase)
(Sun et al., 2014) and superoxide dismutase (SOD)-related genes
(BnSOD) (Su et al., 2021), CBL (calcineurin B-like proteins)
and CIPK (CBL-interacting protein kinases) (Yuan et al., 2014),
and CPK (calcium-dependent protein kinase) and transporters
including SUT/SUC and SWEET (Jian et al., 2016) have been
identified and found to provide genetic resources for improving
high temperature tolerance traits in Brassica.

Antioxidant Defense in Response to
Heat-Induced Oxidative Stress
Plants can only survive during unfavorable heat conditions if,
somehow, they protect themselves from heat-induced oxidative
stress. ROS over-accumulation during stress conditions results
in the oxidation damage of vital molecules such as DNA,
proteins, and lipids. This condition is termed oxidative stress
in plants (Mittler et al., 2012). Plants increase the content of
antioxidants through different physiological and biochemical
mechanisms to overcome oxidative stress caused by heat
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stress and scavenge oxygen radicals. Additional enzymes and
metabolites participated in the antioxidant defense mechanism.
Ascorbate peroxidase (APX), catalase (CAT), superoxide
dismutase (SOD), glutathione reductase (GR), glutathione
peroxidase, peroxiredoxins, and tocopherols are antioxidant
enzymes involved in protecting cells from excess ROS (Lin
et al., 2010; Tang et al., 2021). Camelina has shown some
resilience to high-temperature stress. However, there is no
stability in generating and detoxifying the oxygen radicals
under heat stress, as heat stress increases the ROS content.
Such an inequity may be the increasing amount of H2O2
under heat stress, which creates oxidative damage in the
plant (Ahmad et al., 2021c). The activities of antioxidants
(catalase, protease, and ascorbate peroxidase), osmolytes (GB
and proline), soluble proteins, and sugars increased under
heat stress, which subsequently reduced the H2O2 levels in
stressed plants (Sarwar et al., 2018; Ahmad et al., 2021c). Further,
thiourea improved the defense system of camellia plants by
catalase, protease, ascorbate peroxidase, proline, and glycine
betaine activities under heat stress in cotton (Majeed et al.,
2019, 2021). Application of thiourea regulated the redox state
in plant cells, modulated antioxidant activities, and led to the
reduction of lipid peroxidation products (Goyal and Asthir,
2016). Improvement in B. napus metabolism due to thiourea
application was considered critical to mitigate heat stress damage
by regulating photosynthetic pigments and photosynthetic
efficiency (Waraich et al., 2021b), which has an important
role in redox control during phenological and physiological
development and oxidative stress homeostasis (Mhamdi and
Van Breusegem, 2018). Non-enzymatic antioxidants marked a
decrease in ascorbic acid and total soluble sugars in response
to heat stress compared to the non-stressed control (Hameed
et al., 2013). In addition, the data also revealed a direct
relationship between the activities of antioxidant enzymes
(superoxide dismutase, peroxidase, glutathione reductase,
ascorbate peroxidase, monodehydroascorbate peroxidase)
(Wilson et al., 2014) and the relative expression of genes (heat
shock proteins, osmotin, dehydrin, leaf embryogenesis protein,
aquaporin), under heat stress (Razik et al., 2021). Seedlings
exposed to heat stress with the addition of thiourea significantly
improved ascorbic acid content compared to seedlings exposed
to heat stress without thiourea (Ahmad et al., 2021a). Irenic
improvement in catalase, ascorbate peroxidase, ascorbic acid,
proline, and glycinebetaine was observed in response to thiourea
supplementation compared to the control (without thiourea
application) under heat stress (Catiempo et al., 2021). Proline
accumulation is one of the early stress-induced plant responses
that acts as a selective trait suitable for assessing abiotic stress
tolerance. The ascorbate (AsA) and glutathione (GSH) cycles are
fundamental for scavenging ROS (Figure 7). The activation and
functions of antioxidants are sensitive to temperature ranges,
but their concentration increases as temperature increases.
Chakraborty and Pradhan (2011) assert that the concentration
of APX (ascorbate peroxidase), SOD (superoxide dismutase),
and CAT (catalase) increased at 50◦C. Still, the concentration
of GR (glutathione reductase) and POX (peroxidase) changes
when the temperature ranges from 20 to 50◦C in experiments

performed using Lens culinaris. Consequently, the activity of the
antioxidants depends upon the susceptibility and tolerance of
plants, time of the season, and their growth stages (Almeselmani
et al., 2006). Rani et al. (2013) exposed tolerant and susceptible
genotypes of B. juncea to the high temperature of (45.0± 0.5◦C),
also observing the high content and activity of POX, APX, CAT,
GR, and SOD in tolerant genotypes and less so in susceptible
genotypes. Higher concentrations and activities of enzymatic and
non-enzymatic antioxidants could be responsible for quenching
the reactive oxygen species that help alleviate the negative impact
of heat stress-induced oxidative stress.

CRISPR Technology
Abiotic stresses such as heat, salinity, drought, and waterlogging
are critical limiting factors that affect growth, development,
seed yield, and quality in oilseed crops (Boem et al., 1996;
Purty et al., 2008; Elferjani and Soolanayakanahally, 2018). To
date, several mechanisms have been discovered to analyze the
mechanism of heat stress tolerance, including overexpression
of various miRNAs (Arshad et al., 2017), antioxidant enzymes
(Saxena et al., 2020), as well as genes encoding many
transcription factors (Hao et al., 2011; Zhu et al., 2018),
proteins involved in antioxidant activities (Kim et al., 2019)
or osmoprotectants, and proteins facilitating phytohormonal
signaling pathways (Sahni et al., 2016) in oilseeds. The
success of conventional plant breeding techniques has been
extensively studied to regulate heat stress tolerance mechanisms
in various crops including oilseeds, but these techniques are
very time consuming and cumbersome. As an alternative,
genome editing using clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein (CRISPR/Cas)
has been raised as an innovative technique for precise and
efficient genetic manipulations in plant genomes (Subedi et al.,
2020). Although, there is a discrete lack of information regarding
negative regulators within the heat stress response, and thus
studies involving CRISPR/Cas-mediated enhancement of high-
temperature stress tolerance mechanisms remain scarce. The
multiplex CRISPR/Cas9 system in the regulation of abiotic
stress tolerance has been thoroughly reviewed in oilseed rape
(Chikkaputtaiah et al., 2017). In this paper, we provide an
overview of CRISPR/Cas GE technology in genome editing in
oilseed crops, including primary editing (PE), base editing (BE),
tissue-specific editing (CRISPR-TSKO), epigenome editing, and
inducible genome editing (CRISPR-IGE), which can help to
obtain resistant varieties that can tolerate the deleterious effects
of high-temperature stress (Chennakesavulu et al., 2021) and has
three dimensions, including adoption, crRNA biogenesis, and
interference (Gasiunas et al., 2012; Jinek et al., 2012). Synthetic
20-nucleotide guide crRNA or RNA (gRNA) and Cas proteins
are introduced into plants via a plasmid. Then, the crRNA or
gRNA guides the effector nuclease Cas to identify and alter target
DNA sequences in the plant genome. Subsequently, depending
on DNA-RNA recognition and cleavage of the designated DNA
sequences, CRISPR/Cas technology can be readily designed
to induce double-strand breaks (DSBs) at any target site in
the genome.
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FIGURE 7 | Schematic diagram to show the ASC-GHS cycle to scavenge ROS.

DNA and RNA Base Editing
Genome-wide studies report that agronomically essential plant
traits, including tolerance to abiotic stress, are conferred by
introducing these beneficial alleles to one or more single
nucleotide polymorphisms (SNPs) in plants, which takes
breeders several years (Ren et al., 2010; Li et al., 2015; Singh
et al., 2015). The error-free homology-driven repair in plants
mediated by CRISPR/Cas allows for accuracy in genome editing
by introducing these alleles, but with less effort and efficiency
in delivering donor repair templates (DRTs). The discovery
of CRISPR/Cas9 technology is a simple, easy, and versatile
procedure for genome editing in B. napus and B. oleracea (Song
et al., 2016; Li et al., 2021a). Two groups of base editors have
been used (Komor et al., 2016), including the cytidine base
editor (CBE), which performs C-G to T-A base substitutions,
and the adenine base editor (ABE) is designed for A-T to G-
C substitutions. The cytidine base editor consists of a cytidine
deaminase (rAPOBEC1) fused to a Cas9 nickase (nCas9) carrying
a D10A mutation that inactivates the RuvC domain yet is
capable of binding with sgRNA (Komor et al., 2016). Adenine
base editors contain an adenine deaminase fused to nCas9 to
convert A-T bases to G-C via adenine (A) deamination (Gaudelli
et al., 2017). Clustered, regularly interspaced short palindromic

repeats (CRISPR) are repetitive and short DNA sequences of 29
nucleotides in length are separated by non-repetitive 32-nt spacer
sequences integrated in the anterior portions of protospacer
adjacent motifs (Song et al., 2016). Genome editing with
CRISPR/Cas9 and its advanced versions have been intensively
investigated with many applications: activation or repression
of gene expression, gene mutation, and epigenome editing.
In plants, the application of CRISPR/Cas9 technology is just
emerging due to its high efficiency and simplicity (Song et al.,
2016).

DNA Prime Editing
CRISPR/Cas9 and CRISPR/Cas12a arbitrated genome editing
induces a DSB at the targeted sites (Manghwar et al., 2019),
leading to unintentional changes or production of abnormal
protein(s) due to random insets or removals in the plants.
Though genome editing in base editing technology can be
performed without double-strand breaks, base editors cannot
perform additions, subtractions, and all types of base conversions
(Mishra et al., 2020). To overcome these problems, a new
approach to genome editing based on CRISPR, called primary
editing (also known as genome editing by search and replace), has
been discovered (Anzalone et al., 2019), because this approach
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can write new genetic information by allowing all 12 base-to-base
conversions, adding and removing desired nucleotides (up to 44
bp, respectively, 80 bp) in the plant genome without the need for
double-strand breaks or donor DNA templates.

Epigenome Editing
Epigenetic editing includes DNA methylation and histone
modifications and controls a plethora of critical procedures in
plants, including stability of the genome, imprinting of genes,
and expression of different genes under stressful environments
(Zhang et al., 2018). Abiotic stress induces histone modifications
and hyper/hypo-methylation of DNA, resulting in pressure
inducible genes’ activation or repression (Sudan et al., 2018).
Song et al. (2012) reported that DNA methylation and histone
modification might have a mutual effect on the stress-responsive
genes in soybean.

Tissue-Specific Gene Knockout
(CRISPR-TSKO)
Essential cellular functions, including growth and development
and reproduction, depend upon some highly essential gene
families. The removal or absence of these gene families might
negatively impact plant performance or even become lethal to
the plants (Lloyd et al., 2015). Hence, assessing the role of these
genes in plants has rarely been undertaken to date (Lloyd et al.,
2015). Researchers discovered a new genome-editing technique
known as CRISPR-based tissue-specific knockout (CRISPR-
TSKO) (Decaestecker et al., 2019). The Cas9 protein under
CRISPR-based tissue-specific KO is expressed in the cell/tissue-
specific promoter which leads to the spatial and temporal
regulations of gene editing (Decaestecker et al., 2019).

Tissue Culture-Free Genome Editing
The delivery of CRISPR/Cas9 cassettes is often required in plant
genome editing of the explant or recipient tissues in a culture
which needs to be treated with many exogenous plant hormones
to distinguish them in a whole plant that is expensive, time-
consuming (Hiei and Komari, 2008), and only suitable for a
limited number of species. The complex process of genome
editing has been simplified successfully due to the introduction
of new tissue culture methods or, in some cases, avoiding the step
of tissue culture. In light of this new technique, the gene-edited
somatic cells are reprogrammed into themeristematic cells by the
co-expression of developmental regulators (DRs) with genome
editingmachinery (Maher et al., 2020) that helps tomake genome
editing faster and more straightforward.

Inducible Genome Editing (CRISPR-IGE)
The examination of gene functionality largely depends upon
plant phenotypic analysis of the loss of function mutants. The
knockout or mutations of several genes can be lethal for the
plants during different growth stages throughout the life cycle
(Lloyd et al., 2015). Therefore, the development of non-viable
phenotypes hinders the comprehensive analysis of such vital
genes. Whereas cell or tissue type-specified genome editing
methods, like CRISPR-TSKO, exist for plants (Decaestecker et al.,
2019), there is no method to eliminate a gene in a specific

cell or tissue type in a conditional way. Recently, a new and
inducible genome editing (IGE) technique has been discovered
by merging CRISPR/Cas9 and a well-known XVE (LexA-VP16-
ER) inducible technology (Wang et al., 2020). For instance, a
heat shock-inducible CRISPR/Cas9 (HS-CRISPR/Cas9) system
has been discovered by researchers to generate genetic mutation.
The soybean heat-shock protein (GmHSP17.5E) gene promoter
and rice U3 promoter (Czarnecka et al., 1989) were used to
express Cas9 and sgRNA, respectively (Nandy et al., 2019). Thus,
genome editing in Cas9 can only be performed after inclusion
with exogenous heat-shock treatment.

DNA-Free Genome Editing
In CRISPR/Cas technology, target specificity has been provided
by the Cas protein and sgRNA. These molecules are usually
integrated in the plant genome through the biolistic approach
or agrobacterium-mediated transformation technique. The
unanticipated changes in the genome created by particular
transgenes causes difficulty in upholding a stable phenotype
of edited plants (Woo et al., 2015). Furthermore, the presence
of CRISPR components in crop plants for a prolonged period
may enhance off-target effects; therefore, the transgenes must
be eliminated from the plant genome (Woo et al., 2015).
Researchers have developed a new approach to solve this problem
where rather than recombinant plasmids, preassembled gRNA-
Cas9 protein ribonucleoproteins (RNPs) are delivered into the
protoplast or in vitro zygote (Woo et al., 2015) via a gene gun or
transfection. Consequently, the gRNA can direct Cas9 to simplify
targeted gene editing without integrating a transgene (Woo et al.,
2015), and endogenous proteases degrade Cas9 proteins in plant
cells to minimize off-target effects.

The ERA1 (enhanced response To ABA1) and FTA
(farnesyl transferase A) genes encode the α and β subunits
of farnesyltransferase, which plays a role in ABA signaling, and
transformation of these genes leads to hypersensitivity to abscisic
acid and reduced stomatal conductance and transpiration rate
(Allen et al., 2002; Wang et al., 2009). Stress-induced mutation
of both BnERA1 and BnFTA genes in canola has been found
to improve the proximity of yield protection under stress
conditions (Wang et al., 2005). In addition, in allotetraploid
cotton, simultaneous mutation of two paralogous GhARG genes
mediated by CRISPR/Cas9-based non-homologous end-joining
led to plants with high nitric oxide content and better lateral
roots (Wang et al., 2017). For example, the salt overly sensitive
(SOS) pathway consists of three major components: the protein
kinase SOS2, the calcium-binding protein SOS3, and the plasma
membrane Na+/H+ antiporter SOS1 (Zhu, 2002; Guo et al.,
2004). Under conditions without a limiting growth environment,
gigantea (GI), which is mainly associated with photoperiodic
control of flowering and is a major component of stress tolerance
(Ke et al., 2017), fixes SOS2 and arrests SOS1 activation. Other
potential candidates for NHEJ-based CRISPR/Cas regulation
of stress tolerance are specific members of the stress associated
protein (SAP) gene family of oilseed species, which have
A20/AN1 zinc finger domains and are often differentially
defined under stress conditions (Xuan et al., 2011; Dixit et al.,
2018). Overexpression of some SAP genes induces widespread
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improvement in stress tolerance in many plant species (Dixit
et al., 2018; Zhang et al., 2019).

Omics–A Fundamental Approach in Plant
Breeding to Improve Abiotic Stress
Tolerance
For several decades, scientists have focused on improving the
outcome of significant crops under an ever-increasing abiotic
stress environment. Even though the demand for oilseed crops
has increased at a rapid rate, researchers never gave much
attention to oilseed crops that can ensure food security and
nutrition. This part of the article is focused on a fundamental
breeding approach aiming to improve the performance of oilseed
crops under abiotic stress. Therefore, the importance of omics
technology in this context is peerless. Presently, almost 80–85%
of rapeseed and soybean reference genomes have been sequenced
(850 and 950 megabases, respectively) (Gupta et al., 2017).
Similar to these efforts, widespread omics datasets have become
available from different seed filling stages in other oilseed crops.
Transcriptomic and proteomic studies have detected themajority
of starch metabolism and glycolysis enzymes as the possible
cause of higher oil in B. napus compared to other crops (Gupta
et al., 2017). However, gaining insights through discrete omics
approaches will never be sufficient to address research questions,
whereas assimilating these technologies could effectively decode
gene function, biological pathways and genome structures, and
the metabolic and regulatory networks underlying complex
traits. Hence the integration of omics technologies namely
genomics, transcriptomics, proteomics, phenomics, ionomics,
and phenomics, has a vital role in crop improvement (Figure 8).

Conventional Breeding Strategies
The main objective of traditional breeding is to develop high-
yielding cultivars under normal environmental conditions.
So, the determination of breeders leads the world to produce
high-yielding varieties to enhance overall agriculture production
(Warren, 1998). High-temperature stress due to climate
change may affect the productivity of oilseed crops. Different
investigations have been made by breeders and physiologists
to develop heat stress tolerance traits in oil crops. They found
that these traits are complicated to create because several genes
are involved in controlling one specific feature (Blum, 1988).
Therefore, stress quantification has a lot of serious issues. In field
studies, natural selection is a tough job because of a number of
environmental factors that could ruin the accuracy of what is
needed for the breeding program. Under field conditions, heat
stress is not a consistent phenomenon; it might occur or not
which could mislead the breeders to find or develop a resistant
trait (Driedonks et al., 2016).

Under a stressed environment scenario, genetic engineering
is one of the best economic approaches to develop heat
stress tolerance (Blum, 1988). The assessment, identification,
characterization, and manipulation through genetic engineering
for heat tolerance traits must be evaluated individually for the
specific stages through the ontogenesis of crop plants. The heat
sensitivity also varies among different species. One example of

this is the changes in temperature threshold for groundnut at
different growth stages ranging from germination (14–41◦C),
vegetative development (29–33◦C), and reproductive growth
(22–28◦C) (Prasad et al., 1999, 2000) showing that reproductive
growth is more sensitive to heat stress. Plant breeding has
advanced to develop tolerant lines for heat stress in many
crops, but the range of tolerance and genetic basis still needs
to be revealed. The process of the development of new varieties
is very costly and time-consuming; therefore, understanding
the tolerance mechanisms might help to develop strategies for
germplasm screening for the traits which are related to heat
tolerance in different oilseeds. Some efforts have been made to
build heat tolerance in oilseeds in recent times, for instance, in
sunflower (Senthil-Kumar et al., 2003) and cotton (Rodriguez-
Garay and Barrow, 1988). Breeders will be encouraged, if the
availability of potential donors is good, to deploy such innovative
sources in breeding directly but also to exhume the most robust
alleles that have the ability to tolerate stress. Consequently,
breeding mechanisms for thermo-tolerance are a new approach,
and will require a lot of attention in the future. Nonetheless, if
the objective is to speed up the progress in the breeding section,
most of the emphasis must be placed on (i) the development
of a precise/proper procedure for screening; (ii) identifying
and characterizing thermo-tolerant genetic resources; (iii) every
stage of growth and development of the plant on a genetic
basis must be discerned; and (iv) for the transfer of tolerant
genes to commercial crops, one must screen and prepare a
vast breeding population (Siddique et al., 1999). Progressive
molecular biology techniques might enable the development of
plants with better thermo-tolerance.

Quantitative Train Locus
The breeders identified several tolerant genes and their inherent
patterns through traditional breeding programs (Wahid et al.,
2007). Conventional breeding and transgenic approaches helped
us to understand the multi-genic trait phenomenon of heat
stress tolerance. Multiple genes control different components,
which are very important for heat tolerance in some other
tissues and growth stages of the plant (Howarth, 2005). Current
developments in genotyping assays and marker discovery
set the basis toward the accurate chromosomal positioning
determination of QTLs accountable for the heat tolerance
in plants (Maestri et al., 2002). The discovery of QTL-
linked markers empowers the breeding of stress tolerance
pyramiding/uniting of QTL-associated tolerance to different
stresses. Numerous major or minor QTLs and associatedmarkers
for thermo-tolerance have been recognized in oilseed crops
such as groundnut (Selvaraj et al., 2009), sesame (Wang et al.,
2016b), and soybean (Guo et al., 2010). Jha et al. (2014)
prepared and summarized a list of QTLs linked with heat
resistance of many crops with details of the total number of
QTLs discovered, mapping of used population, PVE, positions
of chromosomes, and associated markers. There are a number
of proteins identified which are influenced by heat stress and
cause floral abortion, including the cytochrome P450 family,
associated with a reduction in the number of silique and
abortion of pollens. Adenosine kinase-2 (Radchuk et al., 2006),
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FIGURE 8 | Integration of omics approaches (genomics, transcriptomics, proteomics, metabolomics, and ionomics) for crop improvement (modified form of Zargar

et al., 2016).

a protein of pentatricopeptide repeat-containing family (PPR)
is linked to the obstruction of flower and pod growth via
embryonic abortion, and proteins of the MATE efflux family
are associated with embryo development (Zhao et al., 2015).
Embryonic and seed abortion-related proteins were also found
like pyruvate kinase family protein (Radchuk et al., 2006),
phosphatidic acid phosphohydrolase 2, lysine methyltransferase
family protein, RGA-like protein 3 (Fischinger and Schulze,
2010), and phosphoenolpyruvate carboxylase 3. There are a few
candidate genes that have been identified which were associated
with QTLs under artificial heat stress conditions for different
oilseed traits.

QTL Mapping/Linkage Mapping and
Linkage Disequilibrium (LD)/Genome-Wide
Association Mapping
For QTL mapping, one must have the genomic resources in
the shape of genome maps and molecular markers and genetic
resources in the condition of the bi-parental mapping population.
For the major oilseed crops, some genome maps and molecular

markers have been identified (Sun et al., 2007; Xia et al., 2007;
Chen et al., 2014; Wang et al., 2016b; Talukder et al., 2019).
QTL mapping has been adopted for the genes of complex
traits in a number of oilseed crops, for seed and oil yield (Shi
et al., 2009) and abiotic stress tolerance (Kiani et al., 2007).
An alternate approach of QTL mapping which is now being
used in crop science known as LD-based association mapping
(AM) was utilized in genetic studies of humans in the early days
of its inception. The basis of AM in the germplasm collection
is the correlation between phenotype and genotype. The use
of AM in QTL detection has many advantages on bi-parental
linkage mapping, such as (1) manipulation in all events of
recombination that happened in the crops’ evolutionary history
that resulted in the much-advanced resolution of mapping; (2)
in this case, there is a need to prepare a particular population
that shortens the time required in QTL mapping, and (3) as
linkage mapping is suitable for the study of only two alleles,
AM can detect/study a higher population of alleles (Neale and
Savolainen, 2004). However, AM has its drawbacks, including
a specious/false-positive linkage between a trait and a marker.
Many statistical tools have been developed to address the problem
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of hidden population structures (Falush et al., 2003). The leading
causes for these problems are mating systems, genetic drift, and
incorrect selection (Flint-Garcia et al., 2003). The genome-wide
association mapping system under high-temperature stress is
being used in several oilseed crops like soybean (Li et al., 2014),
rapeseed (Cai et al., 2014; Zhu et al., 2017), cotton (Sun et al.,
2019), sunflower (Dowell et al., 2019), groundnut (Jiang et al.,
2014), and sesame (Wei et al., 2013).

Transcriptomics: A Key to Understanding
Abiotic Stress Responses in Plants
The study of the transcriptome from a specific tissue, a
particular organ, or organism under specified circumstances
is known as transcriptomics. Transcriptomics characterizes the
transcriptome as a whole where all the expressed genes have
been studied at one term, underneath a particular physiological
condition or developmental stage. It paved the way to understand
how the plant responds to abiotic stresses. The transcriptomic
approach is much more complicated than the genome that
encodes it as a number of the same types of mRNA can be
produced by one gene that encodes various proteins through
alternate splicing. In B. napus, the levels of DNA methylation
increased more in a heat-sensitive than a heat-tolerant genotype
under heat stress (Gao et al., 2014). Transcriptomic analysis
by next-generation sequencing (NGS) and RNA–seq for sRNAs
has primarily improved genomic resources since it was used
in genomics research (Ulfat et al., 2020). In contrast to the
past, sequencing-based and hybridization-based approaches can
help understanding of the gene expression of multiple genes
at a time at the whole-genome level. Microarray technology
is a leading technology in hybridization-based methods that
was used in oilseed crops for large-scale gene expression, for
example, B. napus (Raman et al., 2012), sunflower (Fernandez
et al., 2012), soybean (Ding et al., 2021), and groundnut (Guo
et al., 2011; Xiao-Ping et al., 2011). We have better alternatives
of gene expressions through sequence-based approaches like
serial analysis of gene expression (SAGE), expressed sequence
tags (ESTs), open reading frame EST (ORESTES), and digital
expression analysis (RNA-seq) by utilizing generation sequencers
and massively parallel signature sequencing (MPSS) (Marioni
et al., 2008; Campobenedetto et al., 2020). Whole-genome RNA-
seq became more convenient, and the gene expression at the
whole genome level was rapid due to the emergence of NGS.
This is helpful in organisms with a limited genome and some
non-model lacking reference genes (Strickler et al., 2012). RNA-
seq has been used in many oilseeds like in canola (Jiang
et al., 2013), soybean (Kim et al., 2011; Ding et al., 2020),
oil palm (Shearman et al., 2013), sunflower (Fass et al., 2020),
and groundnut (Chen et al., 2013). Phylogenetic, collinearity,
and multi-plesynteny analyses exhibited dispersed, segmental,
proximal, and tandem gene duplication events in the HSF gene
family. Duplication of gene events suggests that the HSF gene
family of cotton evolution was under strong purifying selection.
Expression analysis revealed that GhiHSF14 is upregulated in
heat stress in cotton (Rehman et al., 2021). The microarray data

characterize numerous tissues, developing stages, and ecological
situations as shown in Table 2.

Proteomics Approach
An emerging technology that can provide a precise and
tremendous amount of information regarding various
metabolites and proteins generated due to abiotic stresses
is proteomics (Rodziewicz et al., 2014). The role of proteomics is
to decipher the importance of redox homeostasis, chaperons or
heat shock proteins, proteins essential in signal transduction, and
metabolic pathways during heat stress. It endorses the amount
of protein present and sends direct information, giving more
precise knowledge and a level of understanding compared to
genomics. The sustainability and crop improvement in oilseeds
can be achieved by integrating proteomics and genetic data of
root systems under high temperatures in oilseeds (Valdés-López
et al., 2016). The primary problem of proteomics is the presence
of multiple genes at one time that have gone through PTMs.

Nevertheless, this technology is emerging fast with a principal
focus on protein interactions, protein quantity, and post-
translational modifications (Champagne and Boutry, 2013).
Generally, proteomics can be used for proportional expression
analysis of two or more protein samples, for understanding
post-translational variations, for proteome profiling to recognize
how proteins perform biological progressions, for learning of
protein-protein relations, and for ascertaining novel biomarkers
to sense and screen exact stress expressions (Chandramouli and
Qian, 2009). Several significant experiments have been conducted
using the proteomics approach in oilseed crops (Table 2). In
oilseed crops, the best way to improve stress tolerance is
to associate different candid proteins that are physiologically
significant. In oilseed crops, proteomic identification has been
made by using both the gel-free and gel-based proteomics
approaches (Chandramouli and Qian, 2009), and separation is
done by using the most frequently used gel-based strategies,
including one-dimensional gel electrophoresis (SDS-PAGE)
(Han et al., 2013; Messaitfa et al., 2014; Li et al., 2020) and
2D-polyacrylamide gel electrophoresis (2-DGE) (Ghaffar et al.,
2020). MS techniques like ESI and MALDI TOF proteomic-
based experiments are very accurate and more precise due
to the accessibility of many genomic sequences of many
organisms and EST information. Though, it has some technical
issues like restricted dynamic resolutions when a substantial
number of proteins are drawn to analyze the identification
and separation of hydroponic proteins and obtainability of
the pure proteome. These challenges can be overcome by
using fluorescent dyes, application of affinity chromatography,
reverse phase HPLC, and explicit fractionation techniques.
Besides, we can characterize the complete proteome through
high-throughput techniques (i.e., robotics, spectrometers, and
multi-dimensional chromatography). These valuable tools have
already been tested. For instance, the functions of different
proteins have been evaluated using proteomics in other plants
like soybean (Mooney et al., 2004; Natarajan et al., 2006). In
addition to all that, new gel-free, highly efficient methods have
been developed for proteomic analysis. This discovery opens
the possibility of identifying many genes and replacing the
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TABLE 2 | Omics studies on heat stress tolerance in different oilseed crops.

Crop Temperature

(◦C)

Omics

techniques

Plant part Method Trait/treatment stage No. of proteins/genes

differentially identified

Location References

Soybean 42 Genomics Seeds RT-PCR, qRT-PCR analyses HSF family genes 38 China Li et al., 2014

Canola 40 Genomics Seeds RNA-seq and qRT-PCR analysis HSF gene family 64 China Zhu et al., 2017

Soybean 35 Transcriptomic Seeds RNA-Seq analysis Biostimulant mechanism 879 Italy Campobenedetto et al.,

2020

38/32 Transcriptomic Male organ Real-time PCR (qRT-PCR) Cytoplasmic male sterility

(CMS)-based hybrid (F1)

8,784 China Ding et al., 2020

38/32 Transcriptomic Male organ qRT-PCR Cytoplasmic male sterility

(CMS)-based hybrid (F1)

1,145 China Ding et al., 2021

Sunflower 45 Transcriptomic Seedlings qRT-PCR Phenological traits 97 Argentina Giacomelli et al., 2012

Cotton Transcriptomic Seeds Multiple sequence alignments

(MSA), NA-seq expression

Cis-regulatory elements 79 China Rehman et al., 2021

Canola 40/30 Proteomics Leaf RPLC, LC-MS/MS Carbohydrate metabolism,

HSPs, and chaperones

1,022 China Yuan et al., 2019

Soybean 37 Proteomics Anther SDS-PAGE Reproductive organs 371, 479, and 417 China Li et al., 2020

40 Proteomics Roots LC-MS/MS Root hairs and stripped roots 1,849 and 3,091 USA Valdés-López et al., 2016

Sunflower 33/29 Proteomics Leaf HPLC Reproductive stage 2,343 Spain De La Haba et al., 2020

Soybean 42/26 Metabolomics Seed UPLC/MS/MS2, UP

LC/MS/MS2, GC/MS

Oil 275 USA Chebrolu et al., 2016

43/35 Metabolomics Leaf UPLC/MS, GC/MS Das et al., 2017

Canola 31/14 Metabolomics Floral buds Gas chromatography–mass

spectrometry GC–MS

Heat 25 Canada Koscielny et al., 2018

Soybean 45/28 Phenomics Leaf OJIP protocol of a Fluorpen

Z995-PAR

Vegetative (4th leaf stage) USA Herritt and Fritschi, 2020

42/28 Phenomics Leaf PAM fluorometer, SPAD Germination India Jumrani et al., 2017

Brassica 35/25 Phenomics Leaf Scanalyzer, LC, PRI, Qy Reproductive stage Australia Chen et al., 2019

Cotton 38 Phenomics Leaf IRGA, Spectro-photometer CMT, CSI USA Singh et al., 2013
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low-throughput techniques. The gel-free techniques currently
used for oilseed crops include ICAT (isotope-coded affinity
tagging) (Oh et al., 2014), MudPit (multidimensional protein
identification technology) (Agrawal and Rakwal, 2008), iTRAQ
(isobaric tagging for relative and absolute quantitation) (Li
et al., 2020), and SILAC (stable isotope labeling by amino acids
in cell culture) (Zargar et al., 2013). The novel techniques
of the long-column method, 2D-LC, and iTRAQ OFFGEL
fractionation, have been developed to identify low abundance
proteins. Progressive automatic peptide purification systems with
great accuracy andmore reproducibility are a crucial task in plant
proteomics (Zargar et al., 2013). Additionally, iTRAQ is more
precise and consistent for protein quantitation than traditional
2-DE analysis (Qin et al., 2013).

Metabolomics Approach
The genes and proteins that play a crucial role in plant
stress responses are identified using genomics, transcriptomics,
and proteomics. The boundary of metabolic pathways and
regularity networks responding to a specific stressor or a
number of simultaneous stresses is needed for the proper
understanding of stress response in plants. A new zenith has
been provided by metabolomics for stress-related studies in
crop plants and has become a crucial tool to understand the
molecular mechanisms underlying stress responses (Weckwerth
and Kahl, 2013). Targeted organism’s metabolomics is a non-
biased, comprehensive, and high-throughput analysis of the
complex metabolite mixture. This is an important technique that,
in collaboration with genomics, transcriptomics, and proteomics,
can provide a missing link in functional genomics, offer new
insights into the study of systems biology, and can more
accurately elucidate biological mechanisms (Saha et al., 2019).
With further advances in proteomics, metabolomics is a dynamic
technique to functional genomics that allows us to recognize and
quantify metabolomes within a single cell, organ, or organism
(Chebrolu et al., 2016). Plant metabolism undergoes specific
configurational changes to achieve metabolic homeostasis. It
synthesizes different compounds to mitigate the adverse effects
of any stress it may experience in its life cycle. There have been
significant advances in metabolomics that could provide greater
insight into the various mechanisms of thermo-stress tolerance
at the metabolic level (Bokszczanin and Fragkostefanakis, 2013).
For example, in studies on soybean, multiple antioxidants
have been found to play a role in improving thermo-tolerance
throughmetabolite studies (Chebrolu et al., 2016). Metabolomics
techniques include some separations approaches like HPLC,
capillary electrophoresis (CE), gas chromatography (GC), mass
spectroscopy (MS), ultra-performance liquid chromatography
(UPLC) along with detection techniques like nuclear magnetic
resonance (NMR) (Das et al., 2017). In metabolite studies, one
has to be focused on all the metabolites at one time because
metabolism in plants is very dynamic and every single aspect
might be linked with some other metabolites with different
expressions; moreover, it might produce multiple metabolites
at certain times (Fischbach and Clardy, 2007). Several key
proteins involved in seed storage proteins, fatty acid metabolism,
allergens, and toxins connected with the development of castor

oil seeds were recognized by engaging an isobaric tag for
relative and absolute quantification (iTRAQ) and isotope-coded
protein labels (ICPLs) and technologies. Understanding the
major metabolites in soybean plants in response to high-
temperature conditions can help in the development of heat-
resistant varieties. The concentrations of flavonoids, ascorbate
(AsA) precursors, and tocopherols were higher in heat-tolerant
genotypes than in heat-sensitive ones (Feng et al., 2020), and
these metabolites can alleviate the adverse effects caused by
damage from heat-induced reactive oxygen species (ROS) during
seed maturation under high temperatures (Das et al., 2017).
Many studies have shown that ROS-scavenging mechanisms play
an important role in protecting plants from heat stress (Xu et al.,
2016).

Ionomic Approach
This refers to an omics study that deals with all the quantitative
documentation of the whole set of ions in an organism under
various external stimuli and then quantifies the changes in ion
production. The production of these ions can be elucidated
by different biochemical pathways that play a vital role in
mineral transport—enzyme catalysis is a cofactor in some
important regularity pathways—and maintaining the integrity
of the cell. Therefore, any variation or change in the process
of ion production results in serious changes in metabolic
processes. The plant ionome must be studied to understand
the key role of ions to carry life processes. Therefore, a good
understanding of gene regulation can be achieved by ionomic-
based studies. These ionomic studies are known to differentiate
natural alleles and different mutants (that might have variation
in one or several elements) (Chen et al., 2009). Ionomics is
very important to understand the elemental composition profile
and their role in the nutritional requirement and physiological
and biochemical functionality. It was observed that these two
genes alter the ionome and elements that present in the leaf. So,
these variations caused the shift in gene expression and change
the multi-elemental profile due to variation in water and ion
transport (Ziegler et al., 2013). Additionally, multi-elemental
profiling helps to detect mutants with various numbers of ions
in soybean seeds (Ziegler et al., 2013). The plant elemental
profile is controlled by a number of factors like availability of
elements, their uptake, their transport, and external conditions
that carry out evapotranspiration. These factors have made the
ionome plan very specific and very sensitive so that the elemental
composition shows several different states. Silicon is found to
have a good role in the abiotic stress tolerance in plants (Liang
et al., 2007) but soybean cannot accumulate silicon due to
some genetic differences, except recently a silicon transporter
gene was introduced in soybean by using ionomic technologies
(Deshmukh et al., 2013).

Phenomics Approach
In recent years, great progress was made in the field of
genomics with the objective of understanding and unraveling
crop genomes. It incorporates the development of various kinds
of genotyping platforms: molecular markers and the study of
marker-trait associations lead to the innovation of genes/QTLs,
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and genetic mapping procedures, whichmakemain crop genome
sequences accessible and garners improvements in sequencing
technologies, lead to a decline in the costs of sequencing. The
sequencing methods have certain improvements that have made
the crop genomes and plant sequencing genomes monotonous
(Jackson et al., 2011). Additionally, it is possible to identify allelic
variation through crop genome sequencing (Furbank and Tester,
2011). Some additional costs of genotyping of the plant genome
could be reduced with the advancement in high-throughput
markers and genotypic platforms (Jumrani et al., 2017).

Furthermore, for the more accurate results from the other
omics techniques like proteomics, transcriptomics, genomics,
etc., one must link their information with proper phenotyping.
The bottlenecks in phenotyping are (i) phenotyping in replicated
trials in numerous situations over years; (ii) sluggish and
expensive phenotyping; (iii) for QTL/gene discovery, the
phenotyping of large mapping populations, followed by the
cloning of significant QTLs; (iv) less accurate approximations
of phenotypic data for testing allelic disparities of a candidate
gene in a germplasm set; and (v) destructive tools used in
phenotyping at static times/growth stages (Furbank and Tester,
2011). All of these are responsible for the gap created between
genotypes and phenotypes referred as the GP gap. For the
resolution of this problematical bottleneck, the phenomics
revolution is the need of the hour. Efforts are made worldwide to
overcome this problem by evolving plant phenomics amenities
that can scan and measure data for hundreds of thousands of
plants in a day in a cultured way (http://www.plantphenomics.
org.au/). These efficient phenomics amenities make use of
good non-invasive imaging, image analysis, spectroscopy, high-
performance computing facilities, and robotics hence saving
labor, cost, and time. Consequently, combined with all other
omics approaches, phenomics has a considerable future in plant
breeding and genetics (Figure 9).

AGRONOMIC APPROACHES

Nutrient Applications
High-temperature stress that could lead to nutritional
deprivation is a significant factor contributing to impaired
plant growth and development. At the same time, exogenous
application of nutrients may alleviate the negative impacts of heat
stress coupled with fulfilling the nutritional requirement. Studies
have revealed the ameliorating effects of nutrient applications.
Nevertheless, foliar or extracellular application of nitrogen (N)
and potassium (K)may improve the ability of the plant to tolerate
high-temperature stress (Hammac et al., 2017; Muhammad et al.,
2019). The application of micronutrients, such as Se (selenium),
B (boron), Mn (manganese), and macronutrients, such as
nitrogen (N), potassium (K), sulfur (S), and calcium (Ca2+) can
modulate leaf water status, stomatal regulation, and upregulation
of physiological and metabolic processes that increase heat
stress tolerance (Waraich et al., 2012). Seed priming with
potassium nitrate played an important role in mitigating heat
stress by increasing the concentration of nitrate reductase,
catalase, peroxidase, proline enzymes, and chlorophyll content,
which helped sesame to maintain its performance under stress

conditions (Kumar et al., 2014, 2016). High-temperature stress
reduces net carbon gain and dry matter production in soybean
under both P application and P deficiency conditions and
reduces net carbon gain (Singh et al., 2018). Increased S supply
has been shown to lead to higher levels of total glucosinolates
in Brassica rapa (Li et al., 2007) and individual glucosinolates
such as glucoraphanin and glucoraphasatin (Krumbein et al.,
2001), sinigrin, glucobrassicanapin, gluconapin, and progoitrin
in Brassica juncea (Kaur et al., 1990), which helped induce heat
tolerance at elevated temperature. In addition, the application
of sulfur at high temperatures increased the activity of various
enzymes, including nitrate reductase, glutamine synthase, and
glutathione dehydrogenase, which are essential in nitrogen
metabolism in sunflower (Ahmad et al., 2020). Foliar-applied
sulfur alleviated the deleterious impact of high-temperature
stress in canola by increasing plant gas exchange attributes
including photosynthesis and stomatal conductance which
depends upon the water status in the plant cells and regulates
the gaseous exchange to improve yield and yield components
in camelina (Waraich et al., 2021b). In oilseed crops, the role
of sulfur is undeniable as it helps to improve the seed quality
parameters. In contrast, in the absence of sulfur, the seed oil
content decreased in oilseed crops under average or heat stress
conditions (Brunel-Muguet et al., 2015). However, sulfur with
expected thermo-sensitization effects may also have the impact a
few nutritional (fatty acids, seed storage protein concentration)
and physiological (IAA, SA, ABA: GA3 ratio) quality criteria, as
well as the antioxidant capacity in B. napus (de Almeida et al.,
2021).

Plant Growth Regulation
With a naturally induced defense system, many chemical
compounds regulate the plant activity under heat stress at
physicochemical levels (Ahmad et al., 2021a). To improve the
growth and productivity of oilseed crops under environmental
stress, the supplementation of plant growth regulators (PGRs)
either through seed or on foliage holds a superior position.
The plant growth regulators are chemicals that may regulate
the growth, physicochemical attributes, and stress tolerance
mechanisms under stressful environments (Shah et al., 2021).
Thiourea, as a plant growth controller, may mediate plant
growth under high-temperature stress. Thiourea (TU) is a
growth promoter under stress conditions due to its redox
regulatory property imparted by the –SH group and regulates
the cell homeostasis to induce stress tolerance (Sahu, 2017;
Wahid et al., 2017). Waraich et al. (2021a) revealed the role
of thiourea to upregulate the gas exchange and water relations
in camelina genotypes grown under high-temperature stress.
The results of the current study showed that application of
thiourea (applied either at the vegetative or reproductive stage)
improved the growth and yield under heat stress by maintaining
the gas exchange traits, antioxidant enzyme activities, and
osmoprotection in sunflower (Akladious, 2014), canola (Ahmad
et al., 2021a,c), and camelina (Ahmad et al., 2021b) as shown
in Figure 10. Exogenously applied abscisic acid enhances plant
defenses by regulating the accumulation of soluble sugars that
improve the lipid profile in castor bean (Chandrasekaran et al.,
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FIGURE 9 | Phenomics and its integration with other omics approaches (adopted from Deshmukh et al., 2014).

2014), while in Brassica napus it increases the accumulation of a
synthetic brassinosteroid (24-epi-BL) that induces heat tolerance
(Kurepin et al., 2008). γ-aminobutyric acid (GABA) significantly
improved the accumulation of osmolytes including proline,
soluble proteins, and sugars, activities of antioxidant enzymes
(superoxide dismutase, ascorbate peroxidase, glutathione
reductase, peroxidase, monodehydroascorbate peroxidase), and
relative gene expression (dehydrin, heat shock proteins, osmotin,
leaf embryogenesis protein, aquaporin) (Razik et al., 2021),
which helped to reduce hydrogen peroxide and malondialdehyde
content in GABA-treated plants compared to untreated plants
under heat stress with an increase in the levels of gene transcripts
encoding antioxidant enzymes, suggesting that GABA regulated
antioxidant defenses and could be partly responsible for the
improved heat tolerance in sunflower (Razik et al., 2021).
Heat stress is one of the causes of gamma-aminobutyric acid
(GABA) accumulation in sesame (Sesamum indicum L) plants
(Bor et al., 2009). Similarly, Bor et al. (2009) reported that a
short heat shock interval also increased the endogenous GABA
content in pea and sesamum indicum plants. Pre-treatment
of soybean seeds with 1mM of putrescine (Put), spermidine
(Spd), and spermine (Spm) alleviated heat stress-induced
damage by improving growth parameters and antioxidant
defense compared to water-sprayed control (Amooaghaie

and Moghym, 2011). Brassinosteroids positively affect plant
responses to abiotic stresses by maintaining Na+ homeostasis,
metal sequestration, increasing heat shock protein synthesis,
enhancing GRX (glutaredoxin) and NPR1 (non-expressor of
pathogenesis-related genes 1) for redox signaling, and increasing
the activities of enzymes involved in the ascorbate-glutathione
cycle (Ahammed et al., 2020).

Microbial Inoculation
A number of microorganism-based stress mitigation
mechanisms have been proposed for plant species. Microbes
belonging to different genera of Achromobacter, Variovorax,
Azospirillum, Bacillus, Azotobacter, Enterobacter, Klebsiella,
Aeromonas, and Pseudomonas have demonstrated the ability
to enhance plant growth even under adverse environmental
conditions (Arkhipova et al., 2007) including high-temperature
stress (de Zelicourt et al., 2013; El-Daim et al., 2014). Microbial
inoculation enhances the regulation of the plant defense system
by improving the production of enzymatic and non-enzymatic
antioxidants along with the production of osmolytes under
high-temperature stress. Endophytic fungus has been found
to stimulate vegetative growth and biomass production due
to its role in mediating the photosynthetic system including
chlorophyll content compared to non-inoculated plants (Ismail
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FIGURE 10 | Effect of heat stress and application of plant growth regulators on phenological, physiological, and biochemical properties of oilseed plants.

et al., 2020). Several microbes have been found to play an
ameliorative role at elevated temperature by improving the
antioxidant content of plants, viz., Bacillus tequilensis (SSB07)
was very promising for mitigating the negative effects of climate
change on crop production as it improved root/shoot length,
biomass, leaf development, the content of photosynthetic
pigments, endogenous jasmonic acid, and salicylic acid in the
phyllosphere, and significantly reduced stress-responsive ABA
overproduction (Kang et al., 2019). The improvement in plant
growth was reflected by greater plant height, leaf area, biomass,
and photosynthetic pigment production under heat stress and
expected conditions in the inoculated plants. Under stress
conditions, Glomus intraradices and G. mosseae were found
to improve seed oil content in B. napus (Keshavarz, 2020).
Application of Bacillus cereus SA1 under high-temperature stress
enhanced the defense system of soybean plants by increasing
superoxide dismutase activity, ascorbic acid peroxidase and
glutathione content, and expression of heat shock proteins
(GmLAX3 and GmAKT2), which have been linked to reduced
detoxification of reactive oxygen species, increased potassium

gradients, and altered auxin and ABA stimuli, and which
are critical for plants under heat stress (Khan et al., 2020).
Bacillus tequilensis (i.e., SSB07) improved the growth of
Chinese cabbage seedlings and produced the gibberellins
GA1, GA3, GA5, GA8, GA19, GA24, and GA53, as well as
indole-3-acetic acid and abscisic acid. The application of B.
tequilensis SSB07 was also found to increase the shoot length
and biomass, leaf development, and photosynthetic pigment
contents of soybean plants. Under heat stress, SSB07 injection
significantly increased the endogenous jasmonic acid and
salicylic acid contents of the phyllosphere and significantly
downregulated the production of stress-responsive ABA. Thus,
B tequilensis SSB07 shows promise for countering the harmful
effects of climate change on crop growth and development
(Kang et al., 2019).

Smart Agricultural Technology
The latest technologies applied to crops can reveal plant
responses to various biotic and abiotic stresses. However, the
practical application of these technologies is not widespread
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among stakeholders due to their high cost. Among irrigation
techniques, sprinklers, gravity irrigation, subsurface drip
irrigation, and center pivot irrigation can cool plants at elevated
temperatures, which would be the preferred method for
commercial growers to manage crop losses due to heat stress
to reduce water losses from traditional irrigation methods. Soil
moisture is critical during heat stress. Shade covers, made of
lightweight materials or those commercially available in various
materials, are an inexpensive strategy applied on a large scale to
manage heat stress. In addition, remote sensing technologies that
use thermal imaging, satellite imaging, thermal imaging, and
hyperspectral sensing are being used to detect heat stress before
symptoms are detectable, thus preventing agricultural losses
(Hernández-Clemente et al., 2019). An airborne infrared/visible
imaging spectrometer was used to quantify heat stress tolerance
based on changes in soil surface temperatures (Shivers et al.,
2019). The photochemical reflectance index (PRI) measured by
aerial hyperspectral scanners reveals the moisture status of crop
plants concerning heat stress to allow gradual feeding without
adverse effects on proper growth and development (Suárez et al.,
2008). New discoveries in remote sensing and plants genomics
enable climate-smart agriculture by developing climate-resilient
crops (Jumrani et al., 2017; Hossain et al., 2021). Remote sensing
techniques may help obtain accurate calibrated measurements
of environmental factors that affect the performance of oil
crops over a range of spatial and temporal resolutions and
thus help sustain agricultural productivity under heat stress.
Chlorophyll fluorescence measured using a spectro-radiometer
and chlorophyll fluorometer under high-temperature stress may
help induce a heat tolerance mechanism in plants in cotton (Van
der Westhuizen et al., 2020). Therefore, chlorophyll fluorescence
techniques may help in non-invasive eco-physiological studies
to access responses of plants against high-temperature stress
(Jumrani et al., 2017). However, the fluorometer in the leaf
chamber is a pulse amplitude modulation (PAM) fluorometer to
measure leaf fluorescence in light and dark-adapted leaves, which
can be used to recognize the basis of photosynthesis and plant
responses to environmental changes (Khan et al., 2020). Along
with physiological observations, plant morphological attributes,
such as leaf curling early in the morning at low air temperature,
which indicate the onset of high-temperature stress, can be used
to identify the negative effects of heat stress in oilseed plants.
Curled leaves impair the transpiration rate by reducing leaf
surface area, which reduces light interception, affecting the water
and nutrition uptake. Cell sap observations in the early morning
can also be used to identify the impact of high-temperature
stress. However, the crop stage at the onset of heat stress is
imperative for determining the type of treatment to alleviate the
impact of high-temperature stress. Under the shadow of smart
technologies, genome editing (GE) is one of the most powerful
techniques to improve heat stress tolerance by manipulating the
genome sequence in plants. Genome editing may help improve
crop performance under high temperature, and has shown
a remarkable potential to tackle the insecurities of the food
industry and develop a climate-smart agriculture system globally
(Liu et al., 2013). On the other hand, plant nutrition also has an
important role in heat stress in oilseeds because foliar spraying of

Zn regulated the physiological properties of plants which helped
to increase the number of siliques per plant, number of seeds
per silique, thousand seed weight, seed yield, seed oil content,
and linoleic acid content. In contrast, erucic acid, stearic acid,
and glucosinolate were decreased (Rad et al., 2021). However,
the improvement of Zn supplementation may increase seed oil
content due to the production of auxin biosynthesis, chlorophyll
content, nitrogen uptake, phosphorus uptake, and a reduction
in sodium concentration in the plant tissues. Another important
consideration for the development of climate-smart oilseed
cultivars is that the vast majority of studies in which abiotic
stress tolerance has been assessed thus far have been based upon
the effect of a single form of stress. While prolonged or acute
exposure to any single abiotic stress can be enough to devastate
oilseed crop yields in the field, several stresses often co-occur in
various combinations and at varying levels, which can compound
the resulting negative effects (Elferjani and Soolanayakanahally,
2018). The precise molecular effects of these interactions
are not well-understood. Therefore, a better understanding
of the mechanisms of response to abiotic stresses under
complex growing conditions will be fundamental to maximizing
our ability to ensure future oilseed improvement using any
breeding platform.

CONCLUSION AND FUTURE
PERSPECTIVES

Oilseeds are an important source of food for human
consumption, and are used as fuel for biodiesel and as various
industrial products. Under a climate change scenario, there is a
high probability that the temperature will exceed the threshold
for oilseeds. Plant responses to heat stress vary from symptomatic
to quantitative. Although, the reproductive stage, the outcome of
which symbolizes the economic value of oilseeds, is specifically
more susceptible to high heat stress, which directly affects the
male and female reproductive parts. Lipid peroxidation leading
to excessive ROS production, changes in antioxidants, and
reconfiguration of metabolite synthesis also plays a significant
role. In response to high-temperature stress, a few adaptive
mechanisms are manifested in plants, including a wide range of
morphological, physiological, and molecular mechanisms that
enable plant survival. Physiological and molecular mechanisms
are essential to help breeders develop better genotypes that can
perform better under heat stress. At present, the physiological
mechanisms of heat stress are reasonably well-understood,
but more profound knowledge is needed in several areas,
particularly to better understand the physiological basis of the
source-to-sink partitioning of assimilates. The introduction of
signaling cascades leads to profound changes in uncharacterized
gene expression that are central to adaptation to heat stress.
Although several signaling molecules are activated/expressed at
high temperatures, Ca2+ regulation remains critical. Expression
of HSPs, HSFs, and other stress-related chaperones that serve
to fold and unfold basic proteins under stress confirm the
three-dimensional assembly of membrane proteins for sustained
cellular function and persistence under high-temperature stress.
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The potential applicability and popularity of genome editing
enables sustainable development of plant resistance to abiotic
stress. Although the use and development of CRISPR/Cas-
based technologies in oilseed crops is still in its infancy, it is
clear that these high-precision molecular breeding tools have
the potential to provide unprecedented levels of productivity
improvement in agronomically valuable oilseed crops and
could thus contribute significantly to our ability to sustainably
meet future demand for oilseed-derived products. Omics has
gained momentum in the last few decades and has become
a tool for crop rescue in the context of climate change. The
combination of multi-omics approaches will play a major
role in identifying stress-responsive genes and identifying the
role of different genes in metabolic pathways and the use of
this information in the rapid development of climate-resilient
oilseeds. Thus, the application of genomics, transcriptomics,
proteomics, phenomics, and ionomics approaches seems to be
more appropriate to better understand the molecular basis of
oilseed response to heat stress in addition to plant tolerance
to heat stress. Study evolution is expanding the gene pool
by using advanced biotechnological tools using omics, which

is the best way to increase productivity. The CRISPR/Cas9
genome editing system and omics technologies promise a future
for agricultural biotechnology in sustainable improvement of
qualitative and quantitative agronomic traits of significant crops
to sustain crop productivity in a rapidly changing global climate.
Agronomic strategies including nutrient management, microbial
inoculation, plant growth regulation, and innovative agricultural
technologies play an essential role in mitigating the detrimental
effects of heat stress. However, future studies are urgently needed
to understand the mechanisms behind heat stress reduction
through microbial treatments. All these efforts will undoubtedly
help to mitigate the negative effects of heat stress and contribute
to improved plant productivity and food security under current
scenarios of climate change and global warming.
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