

16 Numerical Modeling of Morphological Changes of Food Plant Materials during Drying

H. C. P. Karunasena University of Ruhuna

Wijitha Senadeera University of Southern Queensland

CONTENTS

16.1	Introduction	388
	16.1.1 Characteristics of the Cellular Structure Existing in Food Plant	
	Materials	388
	16.1.2 What Happens to the Tissue Structures of Food Plant Materials	
	during Drying	389
	16.1.3 Importance of Predicting Physical and Morphological	
	Changes of Food Plant Materials during Drying and Different	
	Techniques Involved	390
16.2	Numerical Modeling of Morphological Changes of Food	
	Plant Materials during Drying	392
	16.2.1 Conventional Grid-Based Numerical Methods and Their	
	Limitations for Modelling Plant Materials during Drying	394
	16.2.2 Potential of Mesh-Free Methods to Numerically Model the	
	Dried Food Microstructure	397
	16.2.3 Fundamentals of Mesh-Free Methods and	
	Their Applications	399
	16.2.4 Useful Insights Drawn from Fundamentals of Cellular	
	Mechanisms	401
	16.2.5 Useful Insights Drawn from Fundamentals of Cellular Drying	
	Mechanisms	402
16.3	Basics of Mesh-Free-Based Numerical Models Applicable for the	
	Prediction of Plant Tissue Morphological Changes during Drying	403
	16.3.1 Representation of Plant Cells in a Tissue	403
	16.3.2 Modeling the Cell Wall	403
	16.3.3 Modeling the Cell Fluid	406
	16.3.4 Modeling the Tissue	408

16.4	Key Si	mulation Outcomes for the Prediction of Plant Tissue		
	Morphological Changes during Drying			
	16.4.1	Simulation of Morphological Changes of a Single Cell during		
		Drying	411	
	16.4.2	Simulation of Morphological Changes of a Food Plant Tissue		
		during Drying	411	
	16.4.3	Simulation of Morphological Changes of Different Types of		
		Food Plant Tissues during Drying	413	
	16.4.4	Simulation of Porosity Development of Food Plant Tissues		
		during Drying	414	
	16.4.5	Simulation of Case Hardening of Food Plant Tissues during		
		Drying	417	
16.5	Future	Prospects of Numerical Modeling	417	
16.6	Closin	g Remarks	419	
Refe	References			

16.1 INTRODUCTION

Food plant materials, particularly fruits and vegetables, when undergoing drying are subjected to higher levels of morphological changes, leading to alteration of various physical properties characterizing the dried food product. The main factors driving such morphological changes are the moisture content, drying temperature, atmospheric conditions, rate of moisture removal, and properties of the food plant variety. Prediction of such morphological changes is critical for improving the product quality and processing efficiency in food engineering. In that context, different modeling techniques are being researched, each having its own pros and cons depending on the fundamental nature of the technique and its level of advancement achieved, targeting a given application. Among these modeling techniques, numerical modeling has gained considerable attention since the recent past, and which holds true for the present too. In this background, this chapter initially presents an overview of the different modeling techniques used in the field, and then it specifically presents a novel numerical modeling technique available its key applications, limitations, and future prospects.

16.1.1 CHARACTERISTICS OF THE CELLULAR STRUCTURE EXISTING IN FOOD PLANT MATERIALS

Food plant materials are essentially made out of cells aggregated to form tissues. In those plant tissues, cells are mainly composed of two elements: cell fluid and cell wall. Cell fluid usually accounts for about 80%–90% of the whole cell's volume or mass. Cell fluid is mainly occupied by vacuole, which is basically a large storage of watery liquid constituents (Jangam 2011). The cell wall is a thin porous layer mainly composed of microfibers and has viscoelastic properties. The cell wall acts as a boundary to ensure the cell fluid is contained within the cell volume. When the food plant materials are in fresh conditions, cells tend to be in their fully turgid states, having higher turgor pressure values owing to the higher