UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 2 Examination in Engineering: July 2022

Module Number: IS2401

Module Name: Linear Algebra & Differential

Equations

[Three hours]

[Answer all questions, each question carries 12 marks]

Q1. a) An electrical circuit has an inductance L in series with a resistance R and is connected to an alternating voltage supply of $V\cos\omega t$. The current i at a time t after switch is closed and the voltage is applied, is given by the differential equation

$$L\frac{di}{dt} + Ri = V\cos\omega t.$$

Solve the equation if the current is zero when t = 0.

[3 Marks]

b) Prove that, if $F(-\alpha^2) \neq 0$ then

i.
$$\frac{1}{F(D^2)}\{\cos\alpha x\} = \frac{1}{F(-\alpha^2)}\cos\alpha x$$

ii.
$$\frac{1}{F(D^2)}\{\sin\alpha x\} = \frac{1}{F(-\alpha^2)}\sin\alpha x$$

Hence determine the value of $\frac{1}{D^2-2}\sin 4x$.

[4 Marks]

c) i. Show that the following differential equation has regular singular point at infinity.

$$2x^{2}(x-1)\frac{d^{2}y}{dx^{2}} + 3x(x-1)\frac{dy}{dx} + 3y = 0$$

ii. Solve the above differential equation about the infinity.

[5 Marks]

- Q2. a) i. Define a conservative vector field.
 - ii. Let $F = \nabla \phi$, where ϕ is single-valued and has continuous partial derivatives. Show that the work done in moving a particle from one point $P_1 \equiv (x_1, y_1, z_1)$ in the field F to another point $P_2 \equiv (x_2, y_2, z_2)$ is independent of the path joining the two points.

[4 Marks]

- b) i. Let $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$. Show that \mathbf{F} is a conservative force field.
 - ii. Find the scalar potential such that $F = \nabla \phi$.
 - iii. Calculate the work done in moving an object in this field from (1, -2, 1) to (3, 1, 4).

[5 Marks]

c) Evaluate $\iint_S A.n \, ds$, where $A = z\mathbf{i} + x\mathbf{j} - 3y^2z\mathbf{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.

[3 Marks]

- Q3. a) State
 - i. The divergence theorem
 - ii. Stockes' theorem.

[3 Marks]

b) Verify the divergence theorem for $\mathbf{A} = 4x\mathbf{i} - 2y^2\mathbf{j} + z^2\mathbf{k}$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0, z = 3.

[5 Marks]

- c) Let V be the volume bounded by the closed surface S. The scalar field ϕ and φ are acting on the surface S. If \mathbf{n} is the outward unit normal vector to the surface S at the point (x, y, z) and \mathbf{r} is the position vector of the point (x, y, z), prove that
 - i. $\iiint_V (\phi \nabla^2 \varphi \phi \nabla^2 \phi) dv = \iint_S (\phi \nabla \varphi \varphi \nabla \phi) dS$
 - ii. $\int_C \phi d\mathbf{r} = \iint_S (\mathbf{n} \times \nabla \phi) ds = \iint_S d\mathbf{S} \times \nabla \phi$

[4 Marks]

- Q4. a) If V is a vector space over a field F then show that
 - i. For any scalar $k \in F$ and $0 \in V$, k0 = 0.
 - ii. For $0 \in F$ and for any $v \in V$, 0v = 0
 - iii. If $kv = \mathbf{0}$, where $k \in F$ and $v \in V$, then k = 0 or $v = \mathbf{0}$

[3 Marks]

- b) i. Let $V = \mathbb{R}^3$. Write down two subsapaces of V. Justify your answer.
 - ii. Let U and W be two subspaces of the vector space V. If $U \cup W$ is also a subspace of V, show that $U \subseteq W$ or $W \subseteq U$.

[5 Marks]

- c) Let $S = \{(-1, 2, 1, -4), (2, 1, 3, 3), (3, -2, 1, 8), (1, 0, 1, 2), (0, 1, 1, -1)\}.$
 - i. Determine whether S is linearly independent.
 - ii. Determine whether S spans \mathbb{R}^4 .
 - iii. If W is a subspace generates by S, find a basis and the dimension of W.
 - iv. Extend the basis in iii. above to a basis of \mathbb{R}^4 .

[4 Marks]

- Q5. a) Let $T: V \to U$ be a linear transformation, where V and U are two vector spaces over the field \mathbb{F} .
 - i. Briefly explain what is meant by the Kernel and Image of *T*.
 - ii. Show that T(0) = 0.
 - iii. Show that Ker(T) is a subspaces of V.

[3 Marks]

b) Consider the matrix A corresponds to the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$, where

$$A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & -2 \\ 3 & 1 & 0 \\ 1 & -3 & 4 \end{bmatrix}.$$

Find a basis and the dimension of the kernel and the image of *T*.

[2 Marks]

- c) If the matrix A has eigenvalue λ , show that
 - i. A^{-1} has eigenvalue $\frac{1}{\lambda}$
 - ii. A^2 has eigenvalue λ^2

[2 Marks]

d) Consider the matrix

$$A = \begin{bmatrix} 5 & -4 & 8 \\ 8 & -7 & 8 \\ 0 & 0 & -3 \end{bmatrix}$$

- i. Find eigenvalues and corresponding eigen vectors of A.
- ii. Show that $P^{-1}AP = D$; where D is a diagonal matrix whose entries are eigenvalues of A and P is a square matrix with corresponding eigenvectors.
- iii. Hence, find A^{-1} .
- iv. Write down the eigenvalues of A^{-1} .

[5 Marks]