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The Lieb–Liniger model is a prototypical integrable model and has been turned into the benchmark physics in the-
oretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for
calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In par-
ticular, using the Bethe ansatz wave function of the strong coupling Lieb–Liniger model, we analytically calculate the
two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the
model in terms of the fractional statistical parameter α = 1− 2/γ , where γ is the dimensionless interaction strength. We
also discuss the Tan’s adiabatic relation and other universal relations for the strongly repulsive Lieb–Liniger model in terms
of the fractional statistical parameter.
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1. Introduction
The Bethe ansatz, which was introduced in 1931 by Hans

Bethe, has become a powerful method to obtain exact solu-
tions of one-dimensional (1D) quantum many-body systems.
In 1963, Lieb and Liniger[1] solved the 1D many-particle
problem of δ -function interacting bosons by the Bethe’s hy-
pothesis. The ground state, the momentum, and the elemen-
tary excitations were obtained for this model by using the
Lieb–Liniger solution. In this context, a significant step was
made on the discovery of the grand canonical description of
this Lieb–Liniger model by Yang and Yang in 1969.[2] Now,
this grand canonical approach is called Yang–Yang thermody-
namic method. The Yang–Yang thermodynamics of the Lieb–
Liniger Bose gas provides benchmark understanding of quan-
tum statistics, thermodynamics, and quantum critical phenom-
ena in many-body physics, see a review.[3,4] In the context of
ultracold atoms, the 1D Bose gas with a repulsive short-range
interaction characterized by a tunable coupling constant ex-
hibits rich many-body properties. This model thus becomes
an ideal test ground to explore fundamental many-body phe-
nomena ranging from equilibrium to nonequilibrium physics
in the experiment.[5–10]

Despite Lieb–Liniger is arguably the simplest integrable
model, the calculation of the correlation functions is extremely
challenging due to the complexity of the Bethe ansatz many-

body wave function of the model. The study of correla-
tion functions has long been being an important theme in the
physics of ultracold quantum gases since they provide infor-
mation of quantum many-particle interference and coherence
beyond the solely spectra of the systems. Therefore, there
has been much theoretical and experimental interest in the lo-
cal, non-local, and dynamical correlation functions at zero and
finite temperatures via numerous methods based on exactly
solvable models, see Refs. [11]–[22].

For sufficiently strong interaction and sufficiently low
density, the 1D Lieb–Liniger gas enters the Tonks–Girardeau
(TG) regime, in which bosons behave like impenetrable par-
ticles (hard-core bosons). Such impenetrable bosons behave
mostly like the free fermions that build up the Girardeau’s
Bose–Fermi mapping.[23] In fact, the 1D Lieb–Liniger Bose
gas with the interacting strength cB can map onto the fully-
polarized fermions with a p-wave interaction of strength cF =

1/cB.[24] As a result of the Bose–Fermi mapping, the energy
spectra of the Bose and corresponding Fermi systems are iden-
tical at the TG regime. The observables that can be given
in terms of the local density are identical for both systems,
such as dynamical density–density correlation function, see
Ref. [25]. However, this mapping for the off-diagonal cor-
relation function does not like to be true, for example, the mo-
mentum distribution. The Bose–Fermi mapping has tremen-
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