IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Higher-order local and non-local correlations for 1D strongly interacting Bose gas

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 New J. Phys. 18 055014
(http://iopscience.iop.org/1367-2630/18/5/055014)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.56.106.27
This content was downloaded on 02/09/2016 at 02:30

Please note that terms and conditions apply.

You may also be interested in:

Quantum Statistical Mechanics: Examples and applications: equilibrium
P Attard

Time and temperature-dependent correlation function of an impurity in one-dimensional Fermi and
Tonks—Girardeau gases as a Fredholm determinant
Oleksandr Gamayun, Andrei G Pronko and Mikhail B Zvonarev

A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium
correlations of the one-dimensional Bose gas
Jan C Zill, Tod M Wright, Karén V Kheruntsyan et al.

Quantum states of dark solitons in the 1D Bose gas
Jun Sato, Rina Kanamoto, Eriko Kaminishi et al.

The interaction-sensitive states of a trapped two-component ideal Fermi gas and application to the
virial expansion of the unitary Fermi gas
Shimpei Endo and Yvan Castin

One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study
N Matveeva and G E Astrakharchik



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/book/978-0-7503-1188-5/chapter/bk978-0-7503-1188-5ch2
http://iopscience.iop.org/article/10.1088/1367-2630/18/4/045005
http://iopscience.iop.org/article/10.1088/1367-2630/18/4/045005
http://iopscience.iop.org/article/10.1088/1367-2630/18/4/045010
http://iopscience.iop.org/article/10.1088/1367-2630/18/4/045010
http://iopscience.iop.org/article/10.1088/1367-2630/18/7/075008
http://iopscience.iop.org/article/10.1088/1751-8113/49/26/265301
http://iopscience.iop.org/article/10.1088/1751-8113/49/26/265301
http://iopscience.iop.org/article/10.1088/1367-2630/18/6/065009
http://iopscience.iop.org/1367-2630/18/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
4 January 2016

REVISED
3 May 2016

ACCEPTED FOR PUBLICATION
10 May 2016

PUBLISHED
26 May 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 18 (2016) 055014 doi:10.1088/1367-2630/18,/5/055014

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Higher-order local and non-local correlations for 1D strongly
interacting Bose gas

EJKP Nandani'*’, Rudolf A Rémer*, Shina Tan>*® and Xi-Wen Guan"”*

! State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese

Academy of Sciences, Wuhan 430071, People’s Republic of China

University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Department of Mathematics, University of Ruhuna, Matara, 81000, Sri Lanka

Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, UK

> School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA

¢ Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China

Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200,
Australia

® Authors to whom any correspondence should be addressed.

E-mail: shina.tan@physics.gatech.edu and xiwen.guan@anu.edu.au

Keywords: high order correlation functions, generalized exclusion statistics, Fermi distribution, Bethe ansatz weave functions

Abstract

The correlation function is an important quantity in the physics of ultracold quantum gases because it
provides information about the quantum many-body wave function beyond the simple density
profile. In this paper we first study the M-body local correlation functions, gy, of the one-dimensional
(1D) strongly repulsive Bose gas within the Lieb—Liniger model using the analytical method proposed
by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 0104015 2003 New J. Phys. 5 79). In the strong
repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying
the non-mutual generalized exclusion statistics with a statistical parameter « = 1 — 2/7,i.e. the
quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via k; ~ ak;
withi = 1,...,N. Here 7yis the dimensionless interaction strength within the Lieb—Liniger model. We
rigorously prove that such a statistical parameter « solely determines the sub-leading order
contribution to the M-body local correlation function of the gas at strong but finite interaction
strengths. We explicitly calculate the correlation functions gsin terms of yand « at zero, low, and
intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g, and g3
with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al
2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading
order of the short distance non-local correlation functions (¥ (x) -+ W (x) ¥ ( W) - V() of the
strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero
total momentum. Here W (x) is the boson annihilation operator. These general formulas of the higher-
order local and non-local correlation functions of the 1D Bose gas provide new insights into the many-
body physics.

1. Introduction

A fundamental principle of quantum statistical mechanics describes two types of particles: bosons which satisfy
the Bose—Einstein statistics and fermions which satisfy the Fermi—Dirac statistics. An arbitrary number of
identical bosons can occupy one quantum state whereas no more than one identical fermion can occupy the
same quantum state. The latter fundamental concept is called the ‘Pauli exclusion principle’. The statistics can be
derived from the fact that the wave function of a system of bosons (fermions) is symmetric (antisymmetric)
under the exchange of two particles. However, under certain conditions, a system of interacting bosons can be

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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mapped into another system of fermions. A significant example is Girardeau’s Bose—Fermi mapping [6, 7] for
the one-dimensional (1D) Lieb—Liniger Bose gas [8] with an infinitely strong repulsion, which is called the
Tonks—Girardeau gas [6, 9]. This mapping was established based on the observation that for an infinitely strong
repulsion the relative wave function of the interacting bosons must vanish when two bosons coincide spatially.
Such behaviour mimics the Fermi statistics in identical fermions. The Bose—Fermi mapping has tremendous
applications in the study of strongly interacting quantum gases of ultracold atoms [10~17] . In this paper we
present a new application of Girardeau’s Bose—Fermi mapping to the study of higher-order local and non-local
correlation functions.

An alternative description of quantum statistics is provided by Haldane’s exclusion statistics [18, 19].
Haldane formulated a description of fractional statistics [ 18—20] based on the generalized Pauli exclusion
principle, which counts the dimensions in the Hilbert space in a system with adding or removing an extra
particle. Itis now called the generalized exclusion statistics (GESs) [18]. In the strong coupling limit, i.e., when
the interaction strength goes to infinity, the Tonks—Girardeau gas is in many ways equivalent to a non-
interacting Fermi gas. In fact, the 1D 6-function interacting bosons can be mapped onto an ideal gas [20] with the
GES [18] described by the statistical parameter . The equivalence between the 1D interacting bosons and the
non-interacting particles obeying the GES is in general based on the equivalence between the thermodynamic
Bethe ansatz (TBA) equations [21] and the GES equation [20, 22]. The statistical profiles and the thermodynamic
properties of the strongly interacting 1D Bose gas were studied through the GES and TBA approachesin [22]. On
the other hand, the statistical profiles of the strongly interacting 1D Bose gas at low temperatures are equivalent
to those of a gas of ideal particles obeying the non-mutual GES [22], i.e. v is independent of the quasimomenta.
This equivalence has been recently investigated for a 1D model of interacting anyons [22—24]. Such an
equivalence between the 1D interacting Bose gas and the ideal gas with the GES paves a way to calculating the
correlation functions of the interacting system through the ideal gas. In particular, in the non-mutual GES case,
we can map the quasimomenta of N strongly interacting bosons to the momenta of N free fermions via
ki ~ ak,-F withi = 1,...,N, provided that the total momentum k+---+ky = 0.Herea = 1 — 2/7,and vis
the dimensionless interaction strength within the Lieb—Liniger model [8].

Correlation functions provide information about quantum many-body wave functions beyond the simple
measurement of the density profile [25]. Therefore, the study of 2-body and M-body higher-order correlations is
becoming an important theme in the physics of ultracold quantum gases [25]. The higher-order correlation was
first used by Hanbury Brown and Twiss to measure the size of a distant binary star [26]. Recently the non-local
M-body correlations were measured with atomic particles [27, 28]. The local pair correlation function over a
wide range of coupling strengths has been determined experimentally by measuring photoassociation rates in
the 1D Bose gas [30, 31]. Physically, the local pair correlation is a measure of the probability of finding two
particles at the same place. Many studies have focused on the local and non-local correlations in 1D interacting
uniform Bose gases at zero and finite temperatures [ 1-3, 25, 32—-46]. Moreover, some groups have conducted the
measurements of the 2-body and 3-body correlations of bosons in 1D and 3D [29, 30, 47, 48]. Recently, people
have studied the dynamics of strongly interacting bosons in 3D [49, 50].

In this paper, we first calculate the higher-order correlation functions of the 1D strongly interacting Bose gas
by taking the asymptotic Bethe ansatz wave function. In light of an analytical method developed by Gangardt and
Shlyapnikov[1, 2], we rigorously calculate the denominator and the numerator of the M-body correlation
function up to the sub-leading order. Precisely speaking, the M-particle local correlations in the strong coupling
limit (y — o0) can be calculated through the M-body correlation of free fermions by using Wick’s theorem and
the Fermi-Dirac distribution. However, for a strong but finite interaction the bosons do not exhibit pure Fermi
statistics [20, 22]. It is necessary to consider a correction to the pure Fermi statistics in the Gangardt/
Shlyapnikov approach. It turns out that for strong but finite interaction strengths the statistical parameter «
solely determines the sub-leading order contribution to the M-body local correlation function. In the strong
coupling regime, the statistical profiles and the thermodynamic properties of the 1D Bose gas are equivalent to
those of the ideal gas with the GES parameter o [22]. We derive explicit formulas of g, with sub-leading terms
for arbitrary M = 1, 2... at zero and non-zero temperatures. For the special cases of M = 2, 3, our results
reduce to the known results of ¢, and g5 with the sub-leading terms as givenin [1, 2, 4,41, 51, 52]. Furthermore,
we analytically calculate the leading order of the short distance M-body non-local correlation functions
(TT(xq) - T )T (p,) - U(y)) of the 1D strongly repulsive Bose gas. Here W (x) is the boson annihilation
operator.

Our paper is organized as follows. In section 2 we derive a general formula for the M-body local correlation
function gy of 1D bosons at alarge interaction strength, v > 1. In section 3, we analytically calculate the M-
body local correlation at various temperatures. We then compare our results for gy, with the previous results for

The Bose—Fermi mapping may also be used in the reverse order. A prime example is the Usui transformation [59] which maps fermion
pairs to bosons.
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£ and g3 by Gangardt and Shlyapnikov [2], Vadim et al [3], Kormos et al [4], and Wang et al [5]. In section 4 we
study the wave function of M interacting bosons at zero collision energy. In section 5 we calculate the short
distance M-body non-local correlation functions of the ideal Fermi gas. In section 6 we determine the short
distance M-body non-local correlation functions of the 1D strongly repulsive Bose gas, expressing such
correlation functions in terms of the wave functions defined in section 6. In section 7 we conclude.

2. The higher-order local correlation functions of 1D Bosons

We consider N bosons interacting via repulsive -function potentials in 1D with Hamiltonian

= [Z 0%, + 23 6 (xj — x,)] (1)

j>1

where m is the mass of each boson, x;is the coordinate of the jth boson and ¢ > 0 is the coupling constant [8].
The Hamiltonian (1) is diagonalized by means of the Bethe ansatz [2, 8, 53]. For convenience we define the
dimensionless interaction strength v = ¢/n, where n = N/L is the number density of the bosons. Assuming the
periodic boundary condition, 1 (0, %, ...,xn) = ¥ (%, ...,xy, L), we have the energy eigenfunction [2, 8, 54]

Ox, — O,
V(X X5 XN) = l H (1 + ’f)](b(m(xl, X25 o XN)

1<i<j<N
ik, — ik, N
= Z(I)Pl H (1 + %)]exp [Zlkpjxj] )
P 1<i<j<N j=1

inthedomain 0 < x < % < ...<xy < L,where

O (x1, %, .., %N) = Z( 1)? exp [Zlkp]x]], for all x’s 3)

p j=1

is a completely antisymmetric function, and ki, ..., ky are the quasimomenta [8]. Without loss of generality we
shall assume that k; < k; < -+ <ky.The sums in equations (2) and (3) run over N!permutations of the integers
1,...,N,and (—1)? = 4+1(—1) foran even (odd) permutation. The M-particle local correlation function is
defined as [2]

o = WO W@©)1)
M (1)

N fl¢(0,~--,0, Xvta b o) Pdxaga - dxy
(N — M)! f|1/)(xb"'axN)|2dx1 e dxy

= (W (0)M (W (0)™)

> (C))

where |1) is the N-body energy eigenstate associated with the wave function ¢, and U'(x) and ¥(x) are
respectively the creation and the annihilation operators of the bosons. The evaluations of the numerator and the
denominator in equation (4) are extremely hard even for the strong coupling regime. In order to work out gy, we
need to expand both the numerator and the denominator to the sub-leading order in the large coupling limit.
After lengthy calculations, detailed in the appendix, we find

fOL 10 (e300 Pl -+ dxy = [1 LNWN=D O(c2>]f0L 160Gy -+, ) Py -+ dx
C
L
=[a' N+ 0] [ 1600, Pl - dow, )
0

L
j; (0,50, Xar s+ rxn) Py -+ dxy

L
= C_M(M_l)f |¢(A) (Oa xM+l:"'axN)|2dxM+l de + O(C_M(M_l)_z): (6)
0
where
¢(A)(O) xM+l)-~-)-xN) = [ H (axj - 8x,‘)]¢(0)(xl)-~-)xN) |x1:~-:xM:0~ (7)
1<i<j<M

The quasimomenta k;, k, ..., ky deviate from pure Fermi statistics at a large but finite interaction strength.
Instead, they obey the non-mutual GES [20, 22]. The deviation from Fermi statistics for a large but finite
interaction strength yis described by the non-mutual GES parameter o« = 1 — 2/ [22]. If the total

3
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momentum k; +---+ ky = 0,wehave k; = kfa + O(c™2), where k} = 27m;/L and the m;’s are integers
satisfying m; < my < ---<my.

In the strong coupling limit, v >> 1, making a scaling change x; = x/awithi = 1,...,N, we rewrite the
numerator in equation (4) as

L
J; |¢(07)0) xM+1:"'axN)|2dxM+l d-xN

2

I N
_ CfM(MfoO [ TI Oy — 01> (—DPexp (Zikpjxj]
p xj=---=x=0

1<i<j<M j=1

X

doarp1 - dxy + O(cMM=D=2)

ol N
_ MM f [ [ @ - ax.a]}:(—l)f’exp[zikéxf )
0 ’ S j=1

1<i<j<M

= =xf=0
X aMNdxl e dxyg
+ O(C—M(M—l)—Z)
aMTN el ar F FyRdacF F MM-1)-2
= cM(Tl)fo [P0, xpry 15 X)) Pdxpgy o+ dxy + O(cMM=D=2), (8)
where 0 # is the partial derivative with respect to x5
¢(AF)(O’ x]€[+1>""xl{:]) = H (8ij - 8xi"‘)]¢F (xlFJ "'>x11\:l)|xf:~~:x§,:0> 9
1<i<j<M
and ¢7 is the wave function of ideal fermions:
F F N
OF (xfs ) = Y (= DPexp| Y ikyx; |. (10)
p j=1

Itis easy to see that whenever any one of the (N — M) arguments xj; TR ., Xfy goes to zero, say x; — 0, for
some i that satisfies M + 1 < i < N, the function ¢ (0, x{;. 1, -+, x%) goes to zero like (x;). On the other
hand, the function ¢ (0, xi;. |, -+, x%) is periodic:

F F _F F F F F _F _F F
¢(AF)(0: XpgpHXimp X+ Ly X, xy) = ¢(AF)(O) X415 Xim 1 Xi > Xip XN (11)
Thus, whenever aL < x;” < L for some isatisfying M + 1 < i < N, the function ¢®P (0, x5y, 1, -+, x%) is of
the order c . So
b aF F Fy 2y F F b ar F F\p2
S 16400, xfiy e xfpPacf - dx = [ 16400, 1y x)
x dxfp g e dxgy + O(c M), (12)

Assuming that M > 1, we thus find

L M?—N L
& F F F F
J; [1(0,+++,0, Xprs1 -+ xN) Pdxagsy -+ dxy = CM(Tl)j; [§AEN0, xppy 1) Pdxpgy g oo dxy

+ O(C_M(M_l)_z).

(13)
A brute-force calculation yields
L
[ 1696, ) P -+ dy = NYIN detss, (14)
0
where Sisand N x N matrix with elements
ki — k)L
Sij = sinc!, (15)
2
where
. %, é’ = 0’
sinc(§) = £
1, £=0.
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Since S;; = 1fori = j,and S; = O(1/c) fori = j, wefind

detS =1+ O(c™?). (16)
Thus

fL |6 G+ x) Py <+ doy = [1 4 O HINUIN = [1 + 0(c )] fL |67 Gel's oo xp) Py -
0 0

17)
Substituting the above formula into equation (5), we get
L L
f 9 (x5, - x0) [Pdoxy -+ doew = [N 4+ O(c7D)] f |oF G-+ o) P -+ dicf. (18)
0 0
Substituting equations (13) and (18) into equation (4), we find
L
QM N 188000, xysxw) Pl - day PP
&M = MO (N M1 T + O(cMM=D=2), (19)
¢ (N= M [IGF G, -0 P -+ dxw
From the definition of /P, we find
L
| [P A0, xppg1, -5 Xn) Pdxaggr -+ dx
N. 0
N — M)! L
( ) fo |9F Gay, -+ xn) Pdoy - doey
L
N[ 0P 6 G Saas o) dig -+ da
= AM(QX)AM(ay) 0 n |xl="':XM:Y1:"':J’M:0’
N = M)! [ 167 @2 Pz - day
(20)
where Ay (0,) = Ap(Oyyp -5 Oxy,)> and
Aun&p = T (&) =det= (21)
1<i<j<M
is the Vandermonde determinant. Here Zisan M x M matrix with matrix elements
M;=¢&710<i,j<M).
Since ¢F (x;, -+, xy) is a Slater determinant, it satisfies Wick’s theorem:
L
N' j; ¢F*(-xl) : "7xN)¢F(yp "',J/M) XM+1 " ')xN)dxM+l e de
L
N =M [ 167 @z Pz - da
0
= Z(_ 1)qG(x1) )’ql)G(xz, )/,12) ot G(xM) qu)) (22)
q
where the sum runs over all the M! permutations of the integers 1, ---, M, and
L *
N [707 06 2 x0) 67 (s 2w dy o dxy
G(x, y) = T (23)
fo o (21, -, 2n) Pz -+ day
is the 1-particle reduced density matrix of ideal fermions. Substituting the definition of ¢F, we find
1Y .
G(x, y) = T S exp[—ik{ (x — ). (24)
1=1
Substituting the above formula into equation (22), and then equation (22) into equation (20), we find
L
NI j(“) |6AE0, xags1, -5 xn) [Pdxagst -+ dxy M N N . .
, I == > 2 Ak, k). (25)
(N — M)! fo |oF Gay, -5 xn) P -+ doow LA v
Substituting this result into equation (19), we find
oMy X N F F
8 = g 20 3 Akl k) + O MM, 26)
i=1 iy=1
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In the thermodynamic limit, the fermionic momenta le JETPN kf, obey the Fermi distribution: in the interval of
momenta (k, k + dk), where dkis large compared to 27 /L but small compared to 1, the number of fermionic
momentais Lz—‘:(f (k), where

1

/Izkz/Zm—ﬂ >

1+ e w7

fk) = 27)

kg is Boltzmann’s constant, and T'and p are respectively the temperature and the chemical potential of the 1D
Bose gas after it is tuned to infinite coupling adiabatically at a fixed density n. At strong coupling, the actual
temperature is very close to T. In the thermodynamic limit, we thus find

M! oM*-1

S = QmyMMM=1) L/:oo dpy - dpy F(p) - f (D) Ay (P oppg) + O (¢ MMD72), (28)

We would like to mention that the integral form of equation (28) with « set to 1 was derived in [2, 43]. Here the
quantum statistical correction &« = 1 — 2/ contributes to the subleading term of the high order correlation
function; see the proof given in the appendix. At zero temperature f (k) = © (kg — |k|), where © (£) is the
Heaviside step function and the Fermi-like momentum kr = 7n [22]. At non-zero temperatures f(k) is
broadened. Note also that

o Ldk
N = —f (k). 29
IE=iC 29)
Making a change of variable
k = 27nz, (30)
we obtain
MM—1) -
g—ﬁ = M'(Zl) OéMLlf dz -+ dzy N (1) - N(zn) Ay (z, o zm) + O(yMM=D=2) - (31)
n Y —00
where
N (z) = f 27nz). (32)

Equation (31) will be used later to calculate the higher-order local correlation functions.

3. The Higher-order local correlations at various temperatures

3.1. General considerations
From equation (29), we obtain

fm N(2)dz = 1. (33)

The multiple integral on the right hand side of equation (31) can be calculated by using the orthogonal
polynomials in the random matrix model [55, 56], yielding

o M—1
fd@wmmmmmm%%mmzwnha (34)
. i

where h; (j = 0, 1, 2, ...) are the norm-squares of the monic orthogonal polynomials Pj(z) with weight function
N(z)

| " P@P.(2)N (2)dz = hj5;. (35)

The monic orthogonal polynomials can be found by using the Gram—Schmidt process

.2 i p

P =2 — S~ Bl
i—0(Pi(2), Pi(2))

where (A (2), B(z)) = f_ba A(2)B(2)N (z)dz within a finite range —co < a < b < co. Therefore,

equation (31) can be re-expressed as

Pi(2), (36)

g o MM-1) M-1
ﬁ§=mm%FJ oMU by 4+ O MM=D=2), (37)
j=0

We shall use equation (37) to calculate the M-particle local correlation function at various temperatures.

6
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We define
D; = f Z""IN (z)dz = Dyyj, (38)

where i and j are non-negative integers. Because N(z) is an even function, D;; = 0ifi + jis odd. We may expand
the monic orthogonal polynomials as

i
Pi(2) = 3Py, (39)
j=0
where P; = 1. Substituting this formula into equation (35), we find
i J
>N PyDuPy = h;b;;, (40)
k=0=0
which may be written in the matrix form
PDPT =, (4D)
where h is a diagonal matrix with diagonal elements hy, hy, -+, and Pis alower triangular matrix whose diagonal

elements areall 1. Note that in the above equation, the row number and the column number of each matrix
starts from 0. Given the matrix D, we can solve equation (41) to find Pj;and h;.

3.2. Zero temperature
At zero temperature, strongly interacting 1D bosons have a Fermi-like surface [22]

N() = @(% - |z|). (42)
Thus equation (35) is simplified as

1/2
f Pl‘ (Z)P](Z)dZ = hjéij- (43)
2

We can express Pj(z) in terms of the Legendre polynomials

Al @2 — 2k)1(— 1)

() = _ -2k 44
Y& ,ng(j—k)!k!(j—zk)!x 4
which satisfy the orthogonality condition in the interval (—1, +1)
+1 2
il@mgma—y+ﬁ¢ (45)
Comparing the properties of Pj(z) and those of Q;(x), we find
o GY
Pi(z) = @Qj (22) (46)
atzero temperature. Therefore
12 1 [gnT
h- frg P 2d = — . 47
i f,l/z[](z)] ‘ 2j+1[(2j)! “

Substituting the above result into equation (37), we find the M-particle local correlation function at zero
temperature

+ O(y MM=D=2), (48)

M .
7T)M(M—l) QM- 1) Hj:l D)

= Ml L
S =t (v M — D! H]A,: Qi — D!

The above formula is accurate at the leading and sub-leading ordersin 1 /7.

3.3. Low temperatures, T < T

The Sommerfeld expansion is applied to the evaluation of the norm-squares of the monic orthogonal
polynomials at low temperatures. The general expression for the moments of the distribution can be expressed
as
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1 2 i(TY N

where jis any non-negative integer, 7 = T /Ty, and T; = /:*n®/(2mkg) is the quantum degeneracy temperature.
Atlow temperatures T < Ty, solving equation (41) using equation (49), we find

2 T .. . )
= — 1 (1..) 1+ i+ DQ@i+ D7 4o, (50)
2i 4+ 1] (2i)! 2472
Substituting this result into equation (37), we find
M (H;\il ihH2aM*=D (E]M(M_l)
n [H]A-i]] 2j — DUPEM — DII\Y
2
X [1 + %SMZ(MZ - 1)(1) + 0(72)] + Oy MM-D-2), (51)
™

Equation (51) reduces to equation (48) at zero temperature. We would like to emphasize that the above explicit
expression of the M-body correlation functions contains the leading and sub-leading order terms in 1 /-y. It is
very interesting to observe the many-body correlation effects with respect to the interaction parameter 7,
statistics parameter o, and the reduced temperature 7. We also see that the thermal fluctuation strongly affects
the higher-order correlation functions.

3.4. High temperatures, T; < T < 7Ty

In [2] it was noticed that at temperatures T >> Tj, the characteristic momentum of the particles is the thermal
momentum Ky ~ 1/A, where A = (210/%/mky T)'/? is the thermal de Broglie wavelength. Therefore, the small
parameter for the expansion of the amplitudes in equation (2) is 1 / Ac. Thus, it must satisfy the inequality

1/Ac < 1,whichrequires T < +?Tj. Athigh temperatures T >> Ty, the thermal wave length A is much smaller
than the average distance between two particles and the system approaches a Maxwell-Boltzman distribution
[22,53]. In the Boltzmann limit T > T, we have ¢/ = e€@-m/kT 5 1 where e (z) = /2 (2mwnz)?/2m, so we

may simply approximate N(z) as [20,57] N (z) ~ i/ 1

é_ = W .In the temperature regime
e B

T; < T < *Ty, we thus have
_@i-ou

Dy Py (52)
Solving equation (41) using equation (52), we find
il 71
Substituting this result into equation (37), we find
¢ M=)
== (M!)ZQMH( —2] [17 T<T<yT (54)
n 2y j=0

3.5. Discussions
Table 1 shows the higher-order local correlations based on equations (51) and (54).

In [2], Gangardt and Shlyapnikov used the leading term of the wave function to calculate the local
correlations of 1D bosons. They used Jacobi polynomials and the moments of the distribution to evaluate the left
hand side of equation (34) in [2]. They calculated low-order correlation functions g; and g; in the temperature
regime T < T;. However, the coefficient of the temperature term in their g; disagrees with our result of g; in
table 1. Here we have considered the fact that the 1 /¢ correction to the wave function of the strongly interacting
1D bosons leads to a statistical correction to the pure Fermi statistics in their calculation of the correlation
function. We were able to calculate any higher-order correlation functions in a wider range of temperaturs. With
the help of the GESwith &« = 1 — 2/, the higher-order local correlation functions which we obtained provide
sub-leading order corrections (cp. table 1). When « = 1, correlations for the strongly interacting bosons, which
correspond to the Tonks—Girardeau gas with a pure Fermi statistics, were already calculated in [2] at zero

temperature. From table 1 we have
403 () 1(7)
& _ 1(1) [1 N _(1) , 55)
n 3 \v 4\ 7




NewJ. Phys. 18 (2016) 055014 EJKP Nandani et al

Table 1. Higher-order correlations of bosons in two temperature regimes. The gen-
eral forms of the correlation functions are given by equations (51) and (54).
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Figure 1. Double-logarithmic plots of the 2-body and 3-body local correlation functions at zero temperature. These correlation
functions measure the probabilities of finding two and three particles at the same place, respectively. (a) A good agreement between
our result (55) (thin blue solid line) and the exact Bethe ansatz result (57) (thick red dashed line) is observed. The thin black dashed line
is the leading order of g, given in [2]. (b) An excellent agreement between our result (55) (thin blue solid line) and the approximate
result (60) (thick red dashed line) is observed. The thin black dashed line is the leading order of g; given in [2].

1608 6 2
& _ Lo fr 1+3(1) . (56)
n’ 15 \v 2\ 7
Besides the statistical parameter a corrections, explicit formulas of the higher-order correlation functions are
presented in table 1.
In addition, Wang et al [5] have analytically obtained the finite temperature local pair correlations for the

strong coupling Bose gas at quantum criticality using the polylog function in the framework of the TBA
equations. In the Luttinger liquid phase, their result [5] reduces to

2

& 47 6 T?

R N 1 T — 57
n? 3(7][ v AT (/*n?/2m)? 7

which coincides with our result (55). Figure 1(a) shows comparisons of the 2-body correlations represented in
equation (34) in [2] and the results of equations (55) and (57). Although it is clear that (55) and (57) agree with
each other very well, the equation (34) in [2] has a deviation from them at strong but finite interaction strengths.
Moreover, Kormos et al [4, 41] developed a different method to compute the local correlation functions
using the Sinh-Gordon model. They mapped the Lieb-Linger Bose gas onto the Sinh-Gordon model with certain
parameter limits. From the M-particle form factor of the local operator of the Sinh-Gordon model, they

9
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obtained the explicit form of g, and g5 at T' = 0, namely

2
g 4 (7 6 1 8 _
o 5(;) [ S (e ?2)] o0, oY
& _16(x)(; 16 +0( ) (59)
15\ v '

The former coincides with the result given in [46], whereas the latter is consistent with our result (56) with

T = 0. To our best knowledge, our general formula (51) derived here coincides with the known results of ¢, and
g3 [1-3,25,32-46]. However, there is no explicit analytical expression of the local correlation functions g, for

M > 3 forthe 1D Bose gas in the literature. See also a recent study [43]. Cheianov et al obtained two approximate
formulas for g5 at medium-to-strong couplings [3]

0.705 — 0.107y + 5.08 x 10732
1+ 3.417 + 0.90372 + 0.4957>

1<y<7,

& _
F IN=oo = 167° 943 — 540y 442 v

2
156 8932+10.197 +7

7 < v < 30.
Figure 1(b) compares the results among (56) and (60) and the equation (35) in [2]. It clearly shows that when

~ > 7 there is a very good agreement between our result (56) and the approximate expression of Cheianov et al
(60). All three results of g5 reach the same asymptote in the limit v — oo.

4. M-body wave function at zero collision energy

In this section, we consider the wave function of the 1D interacting bosons at zero collision energy and zero total
momentum. If one boson has zero total momentum, its wave function is proportional to

¢V (x) = 1. (61)
When two bosons collide with zero total momentum and zero energy, their wave function is proportional to
PP, %) = a — x| + A, (62)
where
a=2 (63)
c

(—A)is the so-called 1D scattering length.

If M bosons collide with zero total momentum and zero energy, and if we restrict our attention to the case in
which their wave function grows no faster than p™ ™~1/2 at large p, where p is the overall size of the system of M
bosons, then their wave function is uniquely determined up to a multiplicative constant. This wave function is
proportional to ¢ (x;, %, -+, x07). When x; < % < -+ <xyy, for our convenience we define

12l (M- 1) i(kpi — kyj)
M (x1, 2,5 xm) = 1 - , (=D? (1 —Ai)
d) X% M klir(l) Hi<j (lkj — lki) zp: I:g 2

X exp(ikppq R ikprM), (64)

where the limit is understood as follows: hold the ratio k;: ---: ky; constant, and let ki, ..., ka, shrink to zero
simultaneously. p is one of the M! permutations, and (— 1)? is the signature of the permutation. (—1)? = +1
for even permutations and (—1)? = — 1 for odd permutations. In addition, we define ¢™) (x;, %, ---, %)) to be
completely symmetric under the exchanges of its arguments.

The few-body asymptotic Bethe ansatz wave functions defined here will help us to understand important
correlation effects of the many-body systems.

We have the following explicit formulasat x; < % < -

PWV(x) =1, (65)
PP, %) = (g — x) + A, (66)
PP (x1, %, x3) = (% — X)) (x5 — X) (X3 — %)

+ Al — x)* 4+ 400 — x) (63 — %) + (x3 — %)?] + 34%(x3 — x) + %A3, (67)

10
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¢(4)(x1, X5 X35 X4) = (3 — x) (X3 — x) (X3 — %) (x4 — x1) (x4 — %) (x4 — X3)
+ A(8:8% + 8465 + 26383 + 26583 + 126,8463 + 6363 + 6363 + 156,636
+ 15636463 + 46,8505 + 12656265 4 4656,65 + 836 + 8362
+ A2(8% 4 106,83 4+ 106,65 + 126363 4 126263 + 486,6,65 + 36363
+ 38365 + 336,6305 + 33636,65 + 36,65 + 96362 + 36564)
+ %A3 (383 + 428385 + 398,65 + 66830, + 39836, + 14463646, + 1663

+ 383 4 426367 + 6663064
+ 3AY(36% + 13656, + 11846, + 763 + 362 + 136564

+ §A5(362 + 465 + 36,) + %Aﬁ, (68)

etc, where §; = x; — x;_;.Ingeneral, ™ (x;, ---,xpr) is a homogeneous polynomial of x;, ..., xarand A of degree
MM — 1)/2atx < x% < ---<xp. One can show that

¢ a0 = [ (= %)l

Jz:fo(AlxM(Mfl)/zfl) 1+ O(AXMM=1/2-2) 1. O (AMM=D/2-1y1y

+ 112! o (M= DI MI(A/2)MM=D)/2, (69)
In particular, we observe

dM(x,-,x) = 112! - (M — 1)! MI(A/2)MM=D/2 (70)

5. M-body short-distance correlation of the ideal Fermi gas

Consider a spin-polarized 1D ideal Fermi gas with number density n and temperature T. It has momentum
distribution

1
(k) = , (71)
! |+ ex 2k 2m — g

i
where m is the mass of each fermion, kg is Boltzmann’s constant, 14 is the chemical potential and as before
n= f_ O:c %f (k). Using Wick’s theorem, we find that

oo dk; dk
(W) - WD Pa) - W) = S (=DF [ S SRR e f ()
P —oo 2T 2
% ef(iklxﬁ-»-+ikMxM)+(ik1yp1+-~+ikMpr)’ (72)

where U (x) and W (x) are respectively the fermion creation and annihilation operators. When the separations
between these 2M coordinates are much smaller than both the average inter-particle spacing and the thermal de
Broglie wave length, we find

. _ Y X))y —
<\If x) --- \IIT(xM)\I/()/M) \Il(y1)> = (112! - (M — 1)!]2M! E (x] xt)()/j )/,)
+ (higher-order terms in the separations), (73)
where
= [ B pant]] & - kP (74)
27 27 i<

At zero temperature we may use equation (34) and the related formulas in section 3 to deduce
M-1 ..,
- qLL" o e
M= M1 )
[HJ_:1 (2j — DIPFEM — D!

MO, (75)

Let fi(x) = UT(x)¥(x) be the local number density operator. We find that

7] e f = Iu L x)?
(A o) = L) o

plus higher-order terms in the separations, at small but non-zero separations.

11
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6. M-body short-distance non-local correlation of the strongly repulsive Bose gas

In this section we concentrate on the non-local M-body correlation function of the 1D strongly repulsive Bose
gas, with y = % = i > landin the temperature regime T < 2Ty, where Ty = /i’n?/(2mkg) is the quantum
degeneracy temperature, and # is the number density. In such a regime, when x3, - -, x5 are sufficiently close to
each other, such that their maximum separation is comparable to or less than A, but the remaining (N — M)
particles are not that close to them, the N-body wave function is approximately factorized as

/ll)(xla"')xM) XM+1,"',.XN) ~ QS(M)(xb"‘)xM)q)(x) XM+1,"',XN) (77)

plus higher-order corrections, where x = (x; +---+ xp7)/M.
Assuming that

fdxl e Al Gy ) P = 1, (78)

we have

N N!
(V) - W WOs) o WD) = oo [ s o o

X PR, 5 X X1 XN)
X 1/}(}/1)"':}/1\/1) xM+1:"')xN)) (79)
where U (x) and W(x) are respectively the boson creation and annihilation operators. When the maximum

separation of x;, .-+, Xar, ¥} -*+» ), is comparable to or less than A, we may substitute equation (77) into
equation (79) to obtain

(W) - TV () - T() ~ By d™* (-0 6 (35530 (80)
where

N!

= mfdxM+1 o dxy [P X xn) P 5D

Bum

We have ignored the tiny difference between X and 7 in equation (80). If the total momentum of the system is
zero, By is independent of %.
A special case of equation (80) is

() - ACan) & By [¢M (a,x) 1P, (82)

if the coordinates xj, - - -, x) do not coincide. Here 7 (x) is the local number density operator of the bosons.
When the separations between X, - - -, xs are much larger than A, but much smaller than both the average
inter-particle spacing and the thermal de Broglie wave length, we can use our knowledge of ¢™’ to deduce that

(i) - AG)) = Bu [ (x5 — )%

i<j
Comparing the above formula with our result for the ideal Fermi gas (see equation (76)), we get

Iv
By = : 83
M2 o — )P (83)

Therefore, when the separations between x;, -+, X, 45 - *> ¥, are much smaller than both the average inter-
particle spacing and the thermal de Broglie wave length, we get

I
o) -er W ~ M M)*(x ... M) (...
(W) W) WO -+ WOP) % e e 600 i) 600 i)y (89
where ¢™ is defined in section 4. At zero temperature, I/ is given by equation (75). At non-zero temperatures
T < ~y*Ty, one can use equation (74) to calculate I. When T 2 v2T;, equation (84) breaks down. We
emphasize that equation (84) is a key result of this paper.
When the above 2M coordinates are all equal, we get

([T )M [P ) IM) =~ M! Iy (A/2)M M0, (85)
At zero temperature, using equation (75) we find
M.
)M M ([_, (GH¥ MM-D
W) A/[I\II(X)] ) = Mo 1._[]71 > u +o(y™MM=Dy  at T=0, (86)
n [1_[].:1 @2j — DNFECM — DIN\Y

which is consistent with equation (48).

12
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7. Conclusions

Higher-order quantum correlations reveal the quantum many-body effects in ultracold atomic gases [26]. In
light of Gangardt and Shlyapnikov’s method for calculating the higher-order correlation functions of 1D bosons
with an infinitely strong interaction, we have rigorously calculated the M-body correlation function. It turns out
that the quasimomentum distribution correction &« = 1 — 2/ to the free fermions leads to the sub-leading
terms in the M-body correlation functions at a large interaction strength. We have calculated the higher-order
local correlation functions in terms of the statistical parameter v and obtained gy, explicitly for arbitrary M with
sub-leading order terms These results not only recover the expressions for g, and g; with the sub-leading terms
given in the literature [1, 2, 4, 51, 52] but also provide explicit forms of gy, with arbitrary M at zero and non-zero
temperatures. To our best knowledge, there is not yet another such analytical expression of the local correlation
functions g (51) for M > 3 in the literature for the 1D Bose gas’. Moreover, we have explicitly calculated the
short-distance non-local M-body correlation functions of the 1D free fermions and the 1D strongly interacting
bosons in equations (73) and (84). Our results provide new insights into the many-body correlations in quantum
systems of interacting bosons and non-interacting fermions.
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Appendix

In the strong coupling limit, v >> 1, the higher-order correlation function is given by equation (4),

N 19000, ) P - day
(N — M)! J1 Gty o) Py -+ dxy '

Em

Calculating the numerator of the formula
The Bethe ansatz energy eigenfunction in the domain 0 < x < % < ---<xy < Lis

ik — ikp; il
w(xla X5 "')xN) = Z(_I)P H 1+ f exp Zlkp]'X]'
p

1<i<j<N =1

Ox, — Oy,
l H (1 + - c - )]¢(0)(X1,"',XN), (87)

1<i<j<N

where
N
PO(x1, -+ xn) = D (= DPexp| > ikyxj|, forall x (88)
P j=1

is completely antisymmetric under the exchange of its arguments. The function

Oy, — Oy Oy, — Oy
11 (1 + —) 11 (1 + ;)qb(f’)(xb---,xm (89)
Cc Cc

1<i<M;M+1<<N M+1<i<j<N
is still antisymmetric under the exchange of any two coordinates x; and x; satisfying 1 < i < j < M. Being
smooth, such a function must vanish like $4 =172 (or even faster) when the coordinates xj, - - -, X are of the

order § and 6 goes to zero. Therefore, in the domain 0 < xp11 < x40 < -+ <xy < Lwehave

° The integral form of M-body local correlation functions, equation (28) with  set to 1, was presented in [2, 43].
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Dy, — s, Dy, — s,
1;[}(0)"')0) xM+17"')xN) - H R E H (1 + f]

1<i<j<M ¢ 1<iSM;M+1<j<N
I (1 + M)(b(o)(xb""xN)lxl—m—xM—O- (90)
M+1<i<j<N ¢
Atstrong coupling, ¢ — 00, we expand equation (90) as
(0,50, xppg1 - 5xn) = X Ot %8) + XD g, -5 xn) + O(cMM=D/272), (C20)
Inthe domain 0 < xp741 < Xpao < <y < Lwehave

X(O)(xM+l)"')xN) = C_M(M_l)/z[ H (axj - ax;)](b(o)(xb"')xN)lxlz»-»:xM:m

1<i<j<M
M N
and  xO(xprp1,-5x8) = C_M(M_l)/z_ll_(N_ M)Zam + Z (2l = N - 10y (92)
=1 I=M+1
[ H (axj - ax,-)](b(o)(xl) "')xN)lxlz»-»:xM:O- (93)
1<i<j<M
Let
¢(A)(6) XM+1> "')xN) = [ H (an - axi)]¢(0)(x1: "')xN)lxlz»-»:xM:f- (94)
1<i<j<M

Then in the domain 0 < x4 < X412 < - <xy < L equations (92) and (93) become

XOCorrs 1, xn) = ¢ MM=D26BN0, xypy g, -+, %N), (95

(A)
and YD (g Hxy) = CM(MI)/ZI[(N — M) 0P (e, X157+ 75%N)

Oe N
N (D)
+ S @I-N-1 090, X1 ’xN)]. (96)
I=M+1 Ox
Therefore, in the domain 0 < %741 < X2 < - <y < Lwehave
100, -0, xars 1) 2 = [XOP + x@*F D 4 @y 0* L O(MM-1-2)
= ¢ MM=D|3A(0, xpp4 1,0 |
4o Mo-D-1| v — Olg® (€, xpr11, -+ xn) 2
86 ce=0
N
A6, o) 2
+ Z QI-N-1 |20, xpr11 xN) | £ O(cMM-D-2), (97)
I=M+1 Oxy
Let
P(A)(f) = f |¢(A)(6> xM+1)"')xN) IzdxMJrl de> (98)
0<xp 1< <xn<L
P;A)(xl) = f |¢(A)(0) X XN) Pdxarn o dxgopdogg - ds (99)
0<xp 1< << L

where M + 1 < I < N.Then

f |’(/J(0,,O, xM+11"')xN)|2dxM+1 de
0<xp4 1< - <aN<L

= cMM=D ,R)(0) + C‘M(M_”_l{—(N - M)M le=o
Oe a
N
+ > @ =N-D[pPWL) - pEA)(O)]}
I=M+1
4 O(cMM-D-2) (100)

Atleadingorderin 1/c, the quasimomenta k; (1 < j < N) may be approximated as (27/L) x integers. This
implies that p® (¢) is independent of e at leading order in 1/c, and

OpP(e)

e le=0o = O(1/0¢). (101)
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Consideration of the volumes of the domain of integration indicate that
pM0) =0, fM+2<I<N, (102)
pML) =0, fM+1<I<N-L (103)

Because of the smoothness and the complete antisymmetry of ¢© (x;, - -+, x), it is easy to see that when
Xpy1 — 0, the function ¢ (0, xpr1 1, -+, Xy) vanishes like x;7, ;| — 0. Consequently

P ,(0) = 0. (104)

Finally

(A)(L) f |¢(A)(0> XM+1 "> XN—1> L)|2dXM+1 e dxn—g
0y 1< <y 1<L

= [0, xpr 1> %n—1 0) + O(1/c)Pdxprey -+ dxny

0<xp 1< <xv-1<L
= O(1/0)Pdxprsr -+ dxn—1
0oy 1< <av—1<L
=0(1/). (105)
Combining the above findings, we simplify equation (100) as
f W(O;,O, xM+l)"'>xN)|2dxM+l de
0<p 1<+ <an<L
= ¢ MM-D D)) 4 O(cMM-D-2)

= ¢ MY f |60, a1, o5 x08) Pdxpg g o dxy + O (7 MM=D72), (106)
0<xp 1< <xn<L
Multiplying the above equation by (N — M) !, we get
L
j; |'I/J(O,,O, xM+1)”'1xN)|2dxM+l"' d_xN
L
= CiM(M*Df [P0, xpr 1, Xn) Pdxpg sy o oy + O (e MM=D=2), (107)
0

Calculating the denominator of the formula
Atstrong coupling, ¢ — 00, we expand equation (87) as

1p(xl)"'axN) = ’(/J(O)(xl)"':xN) + w(l)(xh"')xN) + O(C_z)’ (108)

whereinthedomain 0 < x < % < ---<xy < Lwehave

PO, - xn) = Z( 1)? exp [Zlkp]x]]; (109)
j=1
(ax- - x,
and ¢(1)(x1,~-~,xN) — Z J—¢(O)(xb...)xN)
1<i<j<N ¢
| N
== 2 = N = DI, -, xn). (110)
¢
Therefore
L
f |7/J(x1,"',xN)|2dx1 —odxy = N!f W(O) + 7/J(1) |2dx1 - dxy F O(C_z)
0 0<x < <xn<L

-~ (WO + @O*D 4+ pOyOF) ]y - dxy + O(c?)
0<x <L

SHS - SANS

:Mf O dx - dy
0<y<

- <XN<

(111)
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where
by = f PO*9, Y Odx --- dxy. (112)
0<x < <an<L

Since the total momentum (k; +---+ ky) must be an integer times (27/L), it is easy to see that when
0<x < <y < L,wehave

N
w@@—xML—mVwa—m:EX—n%mrzymL—auﬂq

» =1
N
=D (=DPexp| —iD kpixn-ji1
p j=1
= (_ 1)r¢(0)*(x11 X2, "')xN)) (113)

where (—1)" is the signature of the reversal permutation {1, ---,N} — {N,---,1}. Inparticular, (—1)" = +1if
mod(N, 4) = Oorl,and (—1)" = —1if mod(N, 4) = 2 or3.
From the above equation one can show that

byi1-j = —b. (114)
Define

Pj(x) = f W(O)(xb“'»qu, X, xj+1,~-~,xN)|2dx1 dxjfldijrl wodxy. (115)
0<x < S 1 SXSx 1S <avs L

Itis easy to see that
L 3pj(x)
2Reb; :J; o —dx = (L) ~ (0. (116)
From the definition of p; (x) we can easily see that
and p(L) =0, ifj<N-1. (118)
Itis also easy to see that
P (0) = py (D). (119)
Thus
2Rebj = 0,if 2 <j< N -1, (120)
and, assuming that N > 2, we have
2Reby = —py (D), (121)
2Reby = +py (D). (122)
So, equation (111)is simplified as
L L NI2(N -1
fo [ (xq, -+, xn) [Pdxg -+ dxy Zj; [YpOPdx - dxy + %PN(L) + O(c™. (123)
Let
L
pun @) = [ 1O x s 0) P - dvy (124)

Strictly speaking, p, ,, (x) depends on x. But in the large c limit if we approximate ¢©) by 4, then p, , (x) is
approximately proportional to the local number density, which is a constant at thermal equilibrium. Thus

1 pL 1 L .
parb(x) = [1 + O(l/C)]—f parb(y)dy = [1 + O(l/C)]—f Iw(O)Idel de) if 0 <x< L. (125)
L Jo L Jo

On the other hand, it is easy to see that
1
L)= —— L). 126
pN( ) (N_l)!parb( ) ( )
Thus, in the limit ¢ — oo we have
IN(N — 1)
cL

L L
tﬁl¢@y~mmﬁdn~-®w=[l+ +cxf%]l;w@de~-ww. (127)
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