CONTENTS

	Page No
ACKNOWLEDGEMENTS	I-III
ABSTRACT	IV-VI
CONTENTS	VII-XIV
LIST OF TABLES	XV-XIX
LIST OF FIGURES	XX-XXI
CHAPTER 1 - INTRODUCTION AND REVIEW OF LITERATURE	1-93
1.1 Classification of anaemias	3
1.2 Iron deficiency anaemia	5
1.2.1 Iron deficiency anaemia in different	
physiological stages of life	7
1.2.1.1 Men	7
1.2.1.2 Post-menopausal women	8
1.2.1.3 Women of child bearing age	9
1.2.1.4 Infants and children	10
1.2.1.4.1 Epidemiology of iron deficience	су
anaemia 🔹	12
1.2.1.4.2 Prevalence among children.	13
1.2.1.4.3 The vulnerability of the wean	ing 15
1.2.1.5 Adolescents	17
1.2.2 Other Haematological effects of	
iron deficiency	19
1.2.3 Non-haematological effects of	
iron deficiency.	20

1.2.3.1 Iron deficiency and the	
central nervous system	21
1.2.3.2 Iron deficiency and infection	22
1.2.3.3 Effect of iron deficiency on	
epithelial structures	23
1.2.4 Pathogenesis of iron deficiency	24
1.2.5 Stages of iron deficiency	26
1.2.6 Diagnosis of iron deficiency	29
1.2.6.1 Histological diagnosis of iron	
deficiency	30
1.2.6.2 Haematological indices of iron	
deficiency	30
1.2.6.3 Biochemical tests for iron deficiency	32
1.2.7 Dietary sources of iron	32
1.2.8 Bioavailability of iron	33
1.2.9 Factors affecting Iron absorption	
from the diet	35
1.2.9.1 Heme-iron absorption.	35
1.2.9.2 Non-heme iron absorption	36
1.2.9.3 Dietary factors affecting	
iron absorption	36
1.2.9.3.1 Dietary factors inhibiting	
iron absorption	37
1.2.9.3.1.1 Phytate	37
1.2.9.3.1.2 Phenolic Compounds	38
1.2.9.3.2 Dietary factors enhancing	
iron absorption	40
1.2.9.3.2.1 Ascorbic acid (AA)	40

·

.

VIII

1.2.9.3.2.2 Other organic acids	41
1.2.9.3.2.3 Meat factor	41
1.2.9.4 Physiological factors affecting	
iron absorption	42
1.2.10 Mechanism of iron absorption and	
regulation	44
1.2.11 Transport of iron	46
1.2.12 Utilization of body iron	48
1.2.13 Storage of iron	48
1.2.14 Excretion	50
1.2.15 Iron balance considerations	51
1.1.15.1 A positive iron balance	53
1.1.15.2 A negative iron balance	53
1.2.16 Iron overload	54
1.2.17 Ways of combating iron deficiency	55
1.2.18 Iron requirements and nutritional	
allowances	57
1.2.18.1 Iron requirements in infancy	٠
and childhood	58
1.2.19 Studies on iron deficiency and anaemia	
in Sri Lanka, and the aetiological/risk	
factors	59
1.3 Weaning foods	62
1.3.1 Need for weaning foods	62
1.3.2 Characteristics of weaning foods	63
1.3.3 When should weaning foods be first	
introduced to infants?	64
1.3.4 Home made weaning foods	66

.

.

•

1.3.5 Weaning foods used in developing c	ountries 68
1.3.6 Village level weaning foods	70
1.3.7 Weaning foods in industrialized co	untries 72
1.3.8 Weaning foods used in Sri Lanka	73
1.3.9 Nutritional evaluation of the wean	ing foods74
1.3.9.1 Nutritional quality	76
1.3.9.1.1 Protein quality	77
1.3.9.1.2 Biological value as a meas	ure of
protein quality	79
1.3.9.1.3 True digestibility and net	protein
utilization (NPU)	81
1.3.9.1.4 Studies on bioavailability	of iron ⁸⁴
1.3.9.1.4.1 Measurement of the	
Bio-available iron co	ontent 85
1.4 Objectives of the study	89
CHAPTER 2 - MATERIALS AND METHODS	102-158
2.1 Selection of Study Sample	103
2.2 Dietary survey	103
2.3 Assessment of iron status of the	
preschool children	104
2.3.1 Haemoglobin concentration	104
2.3.2 Packed Cell Volume (PCV)	106
2.3.3 Serum Iron (SI)	107
2.3.4 Total Iron Binding Capacity (TIBC)	110
2.3.5 Serum Ferritin	112
2.4 Nutritional evaluation of the weaning f	oods 118
2.4.1 Chemical evaluation	118
2.4.1.2 Total nitrogen	119
	-

2.4.1.3 Fat	119
2.4.1.4 Vitamins	119
2.4.1.4.1 Vitamine A (Beta carotene)	119
2.4.1.4.2 Vitamine B_1 and B_2	124
2.4.1.4.3 Vitamine C	125
2.4.1.5 Minerals (Fe and Zn)	129
2.4.1.5.1 Total iron	129
2.4.1.5.2 Determination of the Zinc content	132
2.4.1.6 Analysis of individual amino acids	133
2.4.2 Biological evaluation of the	
protein quality	133
2.4.3 Measurement of iron absorption in humans	
and the effect of ascorbic on iron	
absorption using the extrinsic tag method	139
2.4.3.1 Experimental design and iron isotope	
labelling of the gruel	140
2.4.3.2 Iron absorption measurements	140
2.4.4 Measurement of available iron	
(exchangeable iron) content(in-vitro)	141
2.4.5 Determination of inhibitory factors of	
iron in the weaning foods.	145
2.4.5.1 Iron binding phenolic groups	145
2.4.5.2 Phytate	149
CHAPTER 3 - ASSESSMENT OF IRON STATUS	159-187
3.1 Introduction	160
3.1.1 Assessment of iron status in infants	
and children	160
3.1.2 Criteria for defining iron deficiency	161

XI

3.1.3 Laboratory assessment of iron status	163
3.1.3.1 Haemoglobin	163
3.1.3.2 Packed cell volume	164
3.1.3.3 Serum iron	165
3.1.3.4 Total iron binding capacity and	
transferrin saturation	166
3.1.3.5 Serum ferritin	168
3.1.3.6 Free erythrocyte protoporphyrin	172
3.1.4 Comparison of biochemical parameters	
for assessing iron deficiency.	172
3.2 Methodology	173
3.3 Results	174
3.3.1 Haemoglobin concentration	174
3.3.2 Packed cell volume	174
3.3.3 Serum iron and transferrin saturation	174
3.3.4 Serum ferritin level	175
3.3.5 Anaemia and iron deficiency in the study	·
population .	175
3.3.6 Iron intake from diet	176
3.4. Conclusion	177
CHAPTER 4 - NUTRITIONAL EVALUATION OF TRADITIONAL	
SRI LANKAN WEANING FOODS	188-207
4.1 Introduction	189
4.2 Methodology	192
4.3 Results	193
4.4 Conclusion	197
CHAPTER 5 - IRON ABSORPTION FROM TRADITIONAL AND	
OTHER WEANING FOODS	208-249

.

.

.

XIII

5.1	Intr	oduction	209
5.2	Meth	odology	215
5.3	Resu	lts	215
5	.3.1	Bioavailability of iron from the	
		<u>Centella gruel</u> (iron absorption study,	
		(in vivo.)	215
5	.3.2	Iron availability (exchangeability)	
		of the commonly used weaning foods	
		in Sri Lanka (determined in-vitro)	217
	5.3.3	2.1 Traditional gruels	218
	5.3.	2.3 Iron availability in leafy vegetables	
		used in the preparation of	
		weaning gruels	219
	5.3.	2.4 Marketed weaning foods	220
5	.3.3	Supplementary effect of Thriposha on	
		commonly used weaning foods	220
5	.3.4	Supplementary effect of legumes or	
		sprats on iron availability in traditional	
		weaning foods.	221
5	.3.5	Enhancing effect of ascorbic acid and/or	
		ascorbic acid rich foods on iron	
		absorption from traditional weaning foods	222
5	.3.6	Inhibitory and enhancing factors in	•
		weaning preparations	222

5.3.6.1 Polyphenols and vitamin C	
(Ascorbic acid) in leafy vegetables	
used in the preparation of gruels	223
5.3.6.2 The levels of inhibitors of iron	
absorption in (a) gruels prepared	
with extracts of leafy vegetables	
and (b) other weaning mixtures	223
5.3.6.3 Phytate levels and iron availability	
in rice	225
5.3.6.4 Phytate content and iron availability	
in traditional gruels supplemented	
with legumes	226
5.4 Conclusion	227
	· .
CHAPTER 6 - DISCUSSION	252-272
RECOMMENDATIONS AND LIMITATIONS	273-274
REFERENCES	275-319
PUBLICATIONS AND COMMUNICATIONS	321

~

XIV

.

٥

List of tables

		Page	No
Table	1	Dietary factors increasing and	
		decreasing iron bioavailability	90
Table	2	Estimated iron requirement (mg/day)	91
Table	3	Requirements for absorbed iron	92
Table	4	Steps (1-8) of the radioimmunoassay in the	
		determination of serum ferritin	154
Table	5	Distribution of haematological variables	
		in the population studied	179
Table	6	Iron status of the study subjects	179
Table	7	Prevalence of anaemia and iron deficiency	
		in the population studied	180
Table	8	Relation between haemoglobin and other	
		laboratory values indicating iron status	181
Table	9	Means and standard deviation of haemoglobin,	
		packed cell volume, serum iron, transferrin	
		saturation and serum ferritin in different	
		age groups	182
Table	10	Proportion of children in different age	
		groups having below normal values of	
		haemoglobin and other laboratory parameters	183
Table	11	Estimated dietary requirements for iron	
		(mg/day) for a low bioavailability diet	184
Table	12	Daily iron intakes of children (9-24 months)	184
Table	13	Serum ferritin level in relation to iron	
		intake of children	185
Table	14	Comparison of the nutrient content in gruels	

XVI

.

		with commercially prepared weaning mixtures	
		with respect to daily requirements,	
		WHO/FAO/UNU	198
Table	15	Amino acid composition (mg/g Nitrogen) in	
		raw materials and leaf gruel	200
Table	16	Essential amino acids in breast milk and	
		leaf gruel compared WHO (1985) daily	
		requirements for infants and young children	
		of one to two years	201
Table	17	Protein quality of some weaning foods	202
Table	18	Nutrient content of raw materials of the	
		leaf gruel and other analysed foods that	
		could possibly be used to improve the	
		nutrient content of the leaf gruel	203
Table	19	Nutrient content of the leaf gruel	
		supplemented with other foods	205
Table	20	Methods used to determine iron availability	229
Table	21	Hematological data of the subjects in	
		in vivo study	230
Table	22	Iron absorption measurements from	
		the <u>Centella</u> gruel (with and without ascorbio	С
•		acid) in the study sample	231
Table	23	Bioavailable nutrient density (BND) in	
		one feed of <u>Centella</u> gruel	232
Table	24	Amount of absorbed iron and energy required	
		daily by infants and young children	233
Table	25	Required bioavailable nutrient density	
		for absorbed iron in the <u>Centella</u> gruel if	

.

XVII

XVIII

it is to satisfy the physiological requirements of the children 234 Table 26 Total iron and the available (exchangeable) iron in traditional weaning foods prepared

Table 27 Total iron and the available (exchangeable) iron in other common home made weaning mixtures 23

with different types of leaves

- Table 28 Iron availability (exchangeability)in common leafy vegetables that are used inthe preparation of weaning foods231
- Table 29 Total iron and the percentage of available (exchangeable) iron in commonly used marketed weaning foods 238
- Table 30Supplementary effect of Thriposha on ironavailability of some weaning foods239
- Table 31 Supplementary effect of green gram or sprats on iron availability (exchangeability) of the traditional gruels 240
- Table 32 Enhancing effect of Ascorbic Acid (AA) and Lime juice on iron availability (exchangeability) from the weaning foods 241
- Table 33 Improvement of iron availability in the weaning foods when supplemented with tomatoes 242
- Table 34 Polyphenol content and vitamin C levels

236

235

in the uncooked form of leafy vegetables used in preparation of gruels 243

- Table 35 Polyphenols, total phosphorous and244phytates in the weaning foods244
- Table 36 Phytate levels and iron availability246

1.

Table 37 Effect of supplementation of weaning foods with legumes on the phytate level and iron availability 247

XIX

List of figures

Fig	1	Changes in body iron during infancy	94
Fig	2	The three stage for evaluating iron	
		deficiency	95
Fig	3	Schematic representation for the development	
		of iron deficiency anaemia	96
Fig	4 °	Iron absorption from vegetable and	
		animal foods in normal and iron	
		deficient subjects	97
Fig	5	Iron in the diet	98
Fig	6	Structure formulae of some phenolic	
		compounds with different hydroxylation	
		patterns	99
Fig	7	Schematic representation of the transfer	
		of iron from transferrin to an erythrocyte	
		precursor	100
Fig	8	Schematic outline of iron metabolism	
		in adults	101
Fig	9	Standard curve for the determination of	
•		haemoglobin	155
Fig	10	Formation of anteferritin-ferritin-	
		antiferritin- ¹²⁵ I complex	156
Fig	11	Standard curve for the determination	
		of ferritin	157
Fig	12	Flow diagram for automated analysis of	
	۲	ascorbic acid, dehydroascorbic acid and	

	total vitamin C in food products	158
Fig 13	Distribution of haemoglobin levels of	
	infants and children aged 9 to 24 months	186
Fig 14	Serum ferritin levels in infants and	
	children aged 9 to 24 months	187
Fig 15	Correlation of serum ferritin levels with	
	haemoglobin concentration of the	
	study subjects	188

- Fig 16 Nutrient content of 500 ml breast milk and one feed of traditional leaf gruel expressed in % of recommended daily intake (WHO,1985) 206
- Fig 17 Nutrient content of 500 ml breast milk and one feed of (only the liquid part) traditional leaf gruel expressed in % of recommended daily intake (WHO,1985) 207
- Fig 18 Effect of ascorbic acid (AA) on iron absorption from the <u>Centella</u> gruel 248 Fig 19 Correlation of serum ferritin with iron
- absorption in the study subject 249 Fig 20 Effect of Thriposha on iron availability 250
- Fig 21 AA and lime juice on iron availability 251

XXI