

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 6 Examination in Engineering: January 2022

Module Number: CE6303

Module Name: Environmental Engineering Design

[Three Hours]

[Answer all questions, questions carry unequal marks, the distribution of marks within a question is indicated at the end of each part]

- Q1. For a municipal council, a wastewater collection, treatment, and disposal/reuse system has been proposed. The design of this system consists of a wastewater collection network and a wastewater treatment plant (WWTP). The WWTP will consist of preliminary treatment, primary sedimentation, a flow-through aerated lagoon system (an aerated lagoon and an earthen sedimentation basin without solid recycle), a complete nitrification process in an Activated Sludge Process (ASP) and a wastewater reclamation system. Following questions (1 to 5) are based on this proposed wastewater collection, treatment and disposal/reuse system.
- 1. The proposed WWTP will receive wastewater from respective areas through a gravity-flow trunk sanitary sewer laid via junctions 1, 2 and 3 (Figure 1). Circled numbers indicate the wastewater entry location from respective areas. Calculate the **design** average and design peak flow rates of the WWTP. The following design criteria are applicable:
 - 1. Design population density for all the types of dwellings = 500 persons/ha
 - 2. Design residential wastewater flow = 380 L/capita. d
 - 3. Commercial flow = $150 \, m^3/ha.d$
 - 4. The infiltration rate is negligible
 - 5. Peaking factor for all the types of areas = 2.0

Used to indicate the location or line to which wastewater from the contributing area is discharged; —— Trunk sewer

Figure 1

[8.0 Marks]

2. a) (i) Using the substrate mass balance equation, prove that the equilibrium state effluent soluble BOD_5 (5-day Biochemical Oxygen Demand) concentration (S) in a flow-through aerated lagoon (without recycle) is given by the following equation: $S/S_0 = 1/\{1 + k(V/Q)\}$; where S_0 =influent soluble BOD_5 concentration; V = volume of reactor; Q = flow rate and k = first-order observed soluble BOD_5 removal -rate constant.

[2.0 Marks]

- (ii) In the proposed WWTP, primary treated effluent will enter the flow-through aerated lagoon system. If the wastewater contains adequate nitrogen, phosphorus and other trace nutrients for biological growth, and the hydraulic regime of the reactor is complete mix, determine;
 - The surface area of the flow-through aerated lagoon,

[1.0 Marks]

II. The effluent soluble BOD_5 (S),

[2.0 Marks]

III. The effluent TSS (Total Suspended Solids) concentration,

[2.0 Marks]

IV. The oxygen requirement.

[2.0 Marks]

Table 2(a) gives the design information. The following equations are applicable: $k_T = k_{20}\theta^{(T-20)}$; where T = temperature; $k_T = k_2 \cdot k'$ at 'T' = temperature; $P_x = QY_{obs}(S_0 - S)$; where $P_x =$ biological solids wasted per day $(kg\ VSS/d)$; Oxygen requirement $(kg\ of\ O_2/d) = \{Q(S_0 - S)/x\} - 1.42P_x$.

Table 2(a): Design information for the flow-through aerated lagoon.

Description	Unit	Value
Removal efficiency of the primary clarifier for;		
TSS	%	50
sBOD ₅		35
Influent characteristics to the primary clarifier in terms		
of;	g/m^3	
Total suspended solids (TSS) concentration	•	500
Soluble 5-d Biochemical Oxygen Demand (sBOD5)		307.7
Influent SS are not biologically degradable		
Water temperature in the lagoon	⁰ C	30
Temperature coefficient (θ) at $20^{\circ}C$	-	1.05
Conversion factor (x) for BOD ₅ to BOD _L (Ultimate	-	0.60
Biochemical Oxygen Demand)		
Observed yield coefficient (Yobs)	-	0.35
VSS (Volatile Suspended Solids)/TSS ratio	-	0.80
First-order observed soluble BOD ₅ removal -rate constant	d-1	2.6
(k) at 20 °C		
Design solids retention time (SRT)	d	10
Depth of the lagoon	ทเ	2.0

b) Table 2(b) gives design conditions and requirements for the earthen sedimentation basin, which follows the above aerated lagoon. Determine the **total depth** of the sedimentation basin excluding the free board. The accumulated sludge will be compacted to an average final value of 12 % of the initial solids volume. Assume that the maximum amount of volatile suspended solids (*VSS*) accumulated at the end of t^{th} year is given by the following equation: (*VSS*)_t = [0.7+0.4(t-1)] *X* mass of *VSS* added per year (kg/yr)

Table 2(b): Design information for the earthen sedimentation basin.

Description		Value
Hydraulic detention time		3.0
Liquid level above the sludge layer at its maximum level of accumulation	m	1.6
TSS concentration of the effluent from the sedimentation basin	g/m³	30
Volatile suspended solids (VSS) content of TSS discharged to the sedimentation basin	%	75
Period between two consecutive removals of sludge from the sedimentation basin	years	6
Relative density of the accumulated sludge	-	1.04

[5.0 Marks]

- 3. a) The effluent from the earthen sedimentation basin will be directed to an Activated Sludge Process (ASP), in which a complete nitrification will take place. Figure 3 depicts a schematic diagram of the complete nitrification process. Table 3 (a) gives the design information of the complete nitrification process. Determine;
 - (i) The volume of the aerated reactor,

[1.5 Marks]

(ii) The total oxygen requirement for the complete nitrification,

[1.5 Marks]

(iii) The net mass of volatile solids (biological solids) produced (P_x) ,

[1.0 Marks]

(iv) The effluent flow rate (Q_e) ,

"//

[1.0 Marks]

(v) The power requirement for mixing and supplying oxygen.

[3.0 Marks]

Waste Activated sludge

Figure 3: Schematic diagram of the complete nitrification process.

Following equations may be applicable for the complete nitrification process:

$$\mu'_{m} = \mu_{m} e^{0.098(T-15)} \times \frac{DO}{(K_{O2} + DO)} \times [1 - 0.833(7.2 - pH)]$$

$$(1/SRT) = YU - k_d; U = kS/(K+S); k = \mu_m/Y; 1/SRT^M \sim Yk - k_d; SRT = SF(SRT^M); P_x = QY(S_{0-}S)/(1 + k_d.SRT),$$

The oxygen required for nitrification is 4.3 mgO₂/mg ammonium nitrogen, [M][T]⁻¹

 $\mu_m = \text{Maximum specific growth rate } [T]^{-1}$

 μ_m''' = Maximum specific growth rate (μ_m) considering pH, dissolved oxygen (DO) and temperature for nitrification [T]-1

 $k = Maximum rate of substrate utilization, <math>[T]^{-1}$

 $N = \text{Effluent } NH_4^+ - N \text{ concentration, } [M] [L]^{-3}$

 P_x = Net mass of volatile solids (biological solids) produced, [M] [T]-1

SRT = Solids Retention Time, [T]

 SRT^{M} = Minimum Solids Retention Time, [T]

U =Specific substrate utilization rate, $[T]^{-1}$

Table 3(a): Design information for the complete nitrification process.

Table 3(a): Design information for the complete num Description	Unit	Value
Influent characteristics to the primary clarifier in terms of <i>NH</i> ₄ +- <i>N</i>	g/m³	65
Removal efficiency of the primary clarifier for NH ₄ +-N	%	5
Concentration of microorganisms (X) as volatile suspended solids (VSS)	g/m³	175
Endogenous decay coefficient (k _d)	d-1	0.05
Yield coefficient (Y) for microorganisms	-	0.22
Maximum specific growth rate (μ_m)	d-1	0.45
Dissolved oxygen to be maintained in the reactor	g/m³	2.0
Minimum pH of the wastewater	_	7.1
Minimum sustained temperature	°C	16
SF (Safety Factor) for SRT for nitrification		3.23
Half velocity constant (K _{O2}) for oxygen	g/m³	1.3
Half velocity constant (K _N) for NH ₄ +-N	g/m³	0.8
Flow rate of the waste sludge disposal line (Q_w)	m³/d	500
Elevation of the reactor	m	500
Aerator Oxygen transfer rate	kg O2/kWh	1.8
	$kW/10^3 m^3$	8
Power required for mixing	of Reactor	
Aeration constant, a	-	0.85
Aeration constant, β	_	1.0

$$N = N_0 \left(\frac{\beta c_{s(alt)} - c_L}{9.17} \right) 1.024^{(T-20)} \alpha; C_{s,alt} = C_{s(at sea level)} \times F_a$$

 C_L = Operating oxygen concentration, [M] [L] 3

 $C_{s(alt)}$ = Oxygen saturation concentration for tap water at given temperature and altitude, [M] [L]-3

 F_a = Oxygen solubility correlation factor

 $N = kg O_2/kW.h$ transferred under field conditions.

 $N_0 = kg O_2/kW.h$ transferred in water at 20 °C, and zero DO

 $T = \text{Temperature}, {}^{0}C$

 \vec{a} = Oxygen transfer correction factor for waste

 β = Salinity-surface tension correction factor, usually 1

b) 2.13 percent (2.13 %) of the effluent flow from the above complete nitrification process will be given further treatment in a water reclamation system to make it suitable for reuse. The nitrified effluent from the *ASP* will enter an anaerobic filter for denitrification. Denitrified wastewater will be fed to a fixed bed adsorber filled with Granular Activated Carbon (*GAC*) via a granular gravity filter. Finally, the effluent of the adsorber will undergo ultra-violet (*UV*) disinfection to be suitable for reuse. The target parameter of the fixed bed adsorber will be the remaining dissolved organic matter (*DOM*). *sCOD* is considered as a measure of *DOM*.

Assume that the influent flow rate to the anaerobic filter, granular gravity filter and the *GAC* adsorbers are the same. Determine the amount of activated carbon that would be required for the adsorption process.

Table 3 (b) gives the design information.

The GAC adsorber is described by the Freundlich isotherm, $\frac{x}{m} = 0.0015C_e^{3.56}$; Where,

 C_e = Equilibrium concentration of the adsorbate in the solution after adsorption, $[M][L^{-3}]$

x/m = Amount adsorbate adsorbed per unit weight of adsorbent, [M]/[M]

Note: When the unit of ' C_e ' is 'g/m'; the unit of (x/m) is 'mg/mg'

The following equation may also be used:

$$\left(\frac{x}{m}\right)_b = \frac{X_b}{M_c} = Q\left(C_i - \frac{C_b}{2}\right) \frac{t_b}{M_c}$$

 $(x/m)_b$ = Field breakthrough adsorption capacity, [M]/[M]

 C_b = Breakthrough adsorbate concentration in the effluent, $[M][L^{-3}]$

 C_i = Influent adsorbate concentration, [M][L-3]

 M_c = Mass of GAC in the column, [M]

 X_b = Mass of adsorbate adsorbed onto the GAC column at breakthrough, [M]

Table 3(b): Design information of the Granular Activated Carbon Adsorbers.

Unit	Value
g/m³	12
g/m³	3
-	1: 0.3
d	50
	g/m³ g/m³ -

[5.0 Marks]

4. In the WWTP, the primary sludge and activated excess sludge (biological solids) are mixed together, thickened in a gravity thickener, and digested anaerobically in a batch digester. Assume that three fourth (3/4) of the biological solids produced by the nitrification process in the ASP is wasted every day and directed to the sludge treatment train. Figure 4 illustrates a schematic diagram of the sludge treatment train.

Figure 4: Schematic diagram of the sludge treatment train.

The following equation is applicable:

 $V = t_1(V_1 + V_2)/2 + V_2t_2$; where

 t_1 = Digestion period, [T]

t₂ = Digested sludge storage period, [T]

V = Standard-rate digester volume, $[L]^3$

 V_1 = Raw sludge loading rate, $[L]^3[T]^{-1}$

 V_2 = Digested sludge accumulation rate, $[L]^3[T]^{-1}$

Assume that the supernatant in the thickener is free of suspended solids. Table 4 gives the additional design information.

Table 4: Additional design information for the sludge treatment train.

Description	Unit	Value		
Removal efficiency of the primary clarifier for TSS		50		
Influent characteristics to the primary clarifier in terms of <i>TSS</i>		500		
Density of any type of sludge	kg/m³	1000		
Primary sludge				
Content of solids in the primary sludge	%	4.0		
Activated sludge				
Content of solids in the activated sludge (biological solids)		0.9		
Thickened sludge				
Content of solids in the thickened sludge		5.0		
Batch anaerobic digester				
Non-biodegradable organic matter fraction in the influent	%	40		
Inert matter content of the influent	%	40		
Digestion period(t_1)	d	35		
Digested sludge storage period(t2)	d	90		
Solid content in the digested sludge	%	6.0		

a) Determine the solids load onto the thickener.

[3.0 Marks]

b) Determine the percent sludge volume reduction by the thickener.

[2.0 Marks]

1.

c) If the total biodegradable portion of the organic matter is subjected to anaerobic digestion, determine the digester volume.

[3.0 Marks]

- 5. Preparing a hydraulic profile for average flow conditions, find the following control elevations for the nitrification process (ASP) of the above WWTP:
 - a) Water surface elevation in the secondary clarifier,

[3.0 Marks]

b) Water surface elevation in the aeration tank effluent channel,

[3.0 Marks]

c) Elevation of the effluent weir in the aeration tank.

[1.0 Mark]

Figure 6 illustrates the design information. The following data and assumptions are applicable:

Secondary sedimentation tank

Weir crest elevation - 100 m

Diameter at weir circle - 17 m

Wier spacing -0.3 m

Weir type-90 0 V notch

Underflow-0.4 Q

Length of the pipe between the sedimentation tank and the effluent channel of the aeration tank = 50 m

Head loss computations

Head loss coefficients

Pipe entrance-0.5

Pipe bends-0.4

Pipe exit-1.0

Pipe friction in Darcy-Weibach equation - 0.02

The free fall between the weir crest and the water surface in the downstream channel-0.01 m

The following equations may be applicable:

Head on vee notch weir = $q = 0.55h^{5/2}$

Frictional head loss (h_f)= $f \frac{LV^2}{D \cdot 2g}$ (Darcy-Weibach equation)

Minor head losses $(h_m)=K\frac{v^2}{2g}$

Figure 5: Schematic diagram of the Activated Sludge Process (ASP).

Additional Tables and Figures

Oxygen Solubility Correction Factor Versus Elevation

Dissolved Oxygen Saturation at Sea Level

Diss	Dissolved Oxygen (mg/L) at		
Sa	Saturation in freshwater		
Tempe	rature	Dissolved Oxygen at	
(C°)	(F ⁰)	saturation (mg/L)	
00	32 ⁰	14.6	
50	41 ⁰	12.8	
10 ⁰	50 ⁰	11.3	
15 ⁰	590	10.1	
20°	68 ⁰	9.1	
25°	77 ⁰	8.3	
30°	86°	7.6	