

University of Ruhuna Bachelor of Science (General) Degree Level II (Semester II) Examination June 2022

Subject: Applied / Industrial Mathematics

Course Unit: AMT/IMT223\beta (Applied Probability - Information Theory)

Time: Two (02) Hours

Answer <u>ALL</u> Questions. Calculators will be provided.

		그 나는 그 이 사는 그는 말이 많아, 이는 그래, 그녀들, 유명하는 것은 하게 되었습니까? 나를 다 가게 되지 않아 하지만 않아 없는 것이다. 이 그를 다고 되었습니다.	
1.	(a)	State and prove the Markov's inequality in the usual notation.	[30]
	1.7	A factory that produces batches of 1000 laptops finds that, on average, two laptops per	
		batch are defective. Using the above inequality, estimate the probability that fewer	
		than five laptops in the next batch will be defective.	[10]
(b)	Define, in the usual notation,	
100, T		(i) the relative entropy $D(p q)$ between two probability mass functions p and q .	[05]
		(ii) the mutual information $I(X;Y)$ between two descrete random variables X and Y.	[05]
		Prove that for any $x > 0$, $\log_e x \le x - 1$ with equality iff $x = 1$.	[20]
		Use the above inequality to show that the relative entropy $D(p q)$ is non-negative.	[20]
		Hence, show that the mutual information is also non-negative.	[10]
	3		r 3

2. Consider the joint probability mass function P(X = x, Y = y) of two discrete random variables X and Y given by the following table.

X	0	1	2
0	1/4	1/8	1/8
1	0	0	1/4
2	0	1/8	1/8

- (i) Find the marginal probability mass functions P(X = x) and P(Y = y) of X and Y respectively. Also calculate corresponding entropies H(X) and H(Y). [40]
 (ii) Using the definitions, find the joint entropy H(X,Y) and mutual information I(X;Y). [40]
 (iii) Write down the chain rule for entropy and hence find the conditional entropies H(Y|X) and H(X|Y). [20]
- 3. (a) Consider a source alphabet $A = \{a, b, c, d\}$ with the probability distribution $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}.$
 - Suppose the prefix code $C = \{0, 10, 110, 111\}$ is recommended.

 Calculate the average length $\bar{\ell}$, entropy H(P) and discuss the efficiency of the code. [30]

(b) Define the channel capacity C of a Binary Symmetric Channel (BSC). [10] Write down the channel matrix P and compute the channel capacity C of a BSC with input probability distribution

$$Pr(X = 0) = 0.4, Pr(X = 1) = 0.6;$$

and the probability of error (cross over probability) 0.1.

4. (a) Define the differential entropy of a continuous random variable X. [05]
Find the differential entropy of a normal distribution with mean μ and variance σ². [35]
Hence, deduce the differential entropy of a standard normal distribution. [05]
(b) Define the Kullback-Leibler divergence D(f||g) for two probability density functions f and g on the sample space Ω. [05]
Let f(x) = f(x; 1/θ) and g(x) = g(x; 1/β) be two exponential distributions where θ, β > 0.
Obtain an expression for D(f||g) in the simplest form. [50]

[60]