University of Ruhuna

Bachelor of Science General Degree Level II (Semester II) Examination - June 2022

Subject: Mathematics

Course Unit: MAT222 δ (Real Analysis II)

Time:One (01) Hour

Answer ALL Questions.

1. a) For a functional sequence $\{f_n(x)\}_{n=1}^{\infty}$ on $D \subset \mathbb{R}$, in the usual notation, define the pointwise convergence and the uniform convergence.

Find the limit functions of the followings:

(i)
$$f_n(x) = e^{-nx}$$
; on $x \in [0, \infty)$,

(ii)
$$f_n(x) = \frac{1 - \sin^2 nx}{n^2}$$
; $x \in \mathbb{R}$.

(40 Marks)

b) Let $\{f_n(x)\}_{n=1}^{\infty}$ be a functional sequence such that

$$\lim_{n\to\infty} f_n(x) = f(x)$$
, for $x \in [a, b]$, and

$$M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|.$$

Show that $f_n(x) \to f(x)$ uniformly on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.

Hence, determine the uniform convergence of $f_n(x) = x^2 e^{-nx}$, where $x \in (0, \infty)$.

(30 Marks)

c) Consider the functional sequence $\{f_n(x)\}_{n=1}^{\infty}$,

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le 2/n \\ -n^2 x + 4n, & 2/n \le x \le 4/n \\ 0, & 4/n \le x \le 1. \end{cases}$$

- (i) Sketch the graph of $f_n(x)$ clearly labelling the axes.
- (ii) Find $\int_0^1 f_n(x) dx$.
- (iii) Check the uniformly convergence of $f_n(x)$ to f(x) on [0,1], where f(x) is limit function of $f_n(x)$. Further, clearly state the theorems you may use.

(**30** Marks)

a) In the usual notation, state the Weierstrass M test for functional series.
Hence, determine the uniform convergence of the following functional series,

$$\frac{x}{1+1^2 \cdot x^2} + \frac{x}{2+2^2 \cdot x^2} + \frac{x}{3+3^2 \cdot x^2} + \dots$$

on [a,b] where a < b and $a, b \in \mathbb{R}$.

(30 Marks)

b) In the usual notation, state the Dirichlet test for a functional series. **Hence**, show that

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x^2},$$

is uniformly convergent for all $x \in \mathbb{R}$.

(30 Marks)

c) Consider the series of function:

$$\sum_{n=1}^{\infty} \frac{\sin(nx^2 + x)}{n(n+1)}, \ x \in \mathbb{R}.$$

Check whether the above series of function is uniformly convergent?

(40 Marks)