University of Ruhuna

Bachelor of Science General Degree Level II (Semester II) Examination - June 2022

Subject: Mathematics

Course unit: MAT225 β (Mathematical Statistics-I)

Time: Two (02) Hours

Answer all questions.

1. a) Let Y_1 and Y_2 be jointly distributed random variables with means μ_1 and μ_2 respectively. In the usual notation define the covariance of Y_1 and Y_2 . Show that $Cov(Y_1, Y_2) = E(Y_1Y_2) - \mu_1\mu_2$.

(20 marks)

b) The joint probability distribution of discrete random variables Y_1 and Y_2 is given by the following table.

		y_2			
		0	i	2	3
y_1	0	1/12	1/4	1/8	1/120
	1	1/6	1/4	1/20	0
	2	1/24	1/40	0	0

- (i) Find $P(Y_1 = 0, 1 \le Y_2 < 3)$
- (ii) Find $P(Y_1 > Y_2)$
- (iii) Calculate $E(Y_1Y_2)$, $E(Y_1)$ and $E(Y_2)$.
- (iv) Hence find, the $Cov(Y_1, Y_2)$.
- (v) Determine whether Y_1 and Y_2 are independent or not. Justify your answer.

(80 marks)

2. a) The joint probability density function of random variables Y_1 and Y_2 is given by

$$f_{Y_1Y_2}(y_1,y_2) = \begin{cases} \frac{2}{3}(y_1 + 2y_2) & \text{, if } 0 < y_1 < 1 \text{ and } 0 < y_2 < 1 \\ 0 & \text{, otherwise} \end{cases}$$

Find

- (i) the marginal probability density function of Y_2 .
- (ii) conditional density function of Y_1 given $Y_2 = \frac{1}{2}$.
- (iii) conditional mean of Y_1 given $Y_2 = \frac{1}{2}$.
- (iv) conditional variance of Y_1 given $Y_2 = \frac{1}{2}$.

(100 marks)

3. a) If the probability density function of the random variable Y is given by

$$f_Y(y) = \begin{cases} 6y(1-y) & \text{, if } 0 < y < 1 \\ 0 & \text{, otherwise} \end{cases}$$
 find the probability density function of $U = Y^3$.

(40 marks)

b) Y_1 and Y_2 are standard normally distributed independent random variables. If $U_1 = Y_1 + Y_2$ and $U_2 = Y_1 - Y_2$, find the joint probability density function of U_1 and U_2 .

(60 marks)

- 4. a) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n taken from a normal distribution with mean μ and variance σ^2 .
 - I Define the sample mean, \bar{Y} and the sample variance, S^2 .

(10 marks)

II Write down the distributions of the following random variables.

$$\sqrt{n}\left(\frac{\bar{Y}-\mu}{\sigma}\right), \quad \sum_{i=1}^{n}\left(\frac{Y_i-\mu}{\sigma}\right)^2, \quad \sum_{i=1}^{n}\left(\frac{Y_i-\bar{Y}}{\sigma}\right)^2$$

Let $\mu = 0$, $\sigma^2 = 4$ and n = 16

- (i) If $P(|\bar{Y}| < a) = 0.5$, find a.
- (ii) If $P(\alpha_1 < S^2 < \alpha_2) = 0.9$ and $P(S^2 < \alpha_1) = P(S^2 > \alpha_2)$, find α_1 and α_2 .

(50 marks)

b) State the central limit theorem.

The service times for customers coming through a checkout counter in a retail store are independent random variables with mean 1.5 minutes and variance 1.0 minutes². Calculate approximately the probability that 100 customers can be served in less than 2 hours of total service time.

(40 marks)