

Controlled growth of ZnO/SnO₂ mixed nanowires by carbon assisted thermal evaporation process

T. Tharsika¹, A.S.M.A. Haseeb¹*, S.A. Akbar² and M.F.M. Sabri¹

¹Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

²Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210, USA

This work reports the controlled growth of ZnO/SnO₂ mixed nanowires, fabricated by the bottom up process of carbon assisted thermal evaporation method, through vapor-liquid-solid (VLS) mechanism. In this study, SnO₂, ZnO and activated carbon powders are used to grow ZnO/SnO₂ mixed nanowires with the help of a gold catalyst on alumina substrate. Tin, zinc, and gold eutectic compounds promote a nucleation site for the deposition of ZnO/SnO₂ mixed nanowires synthesized at 900°C. The crystalline structures of ZnO/SnO₂ nanowires are analyzed by X-ray diffraction (XRD). The morphological characterization of fabricated products is performed by field-emission scanning electron microscopy (FESEM). A sharp peak of XRD patterns exhibits the high crystallinity of the ZnO/SnO₂ mixed nanowires. FESEM images show that the length of nanowires increased from 2 μm to 80 μm with the increase of growth time from 30 min to 120 min. These mixed nanowires could find potential applications in chemical gas sensors and optoelectronic devices.

Key words: Carbon assisted thermal evaporation method, ZnO/SnO_2 nanowires, vapor-liquid-solid mechanism

^{*}haseeb@um.edu.my