ISSN: 1391-8796 Abstracts of Presentations 1st Ruhuna International Science & Technology Conference University of Ruhuna, Matara, Sri Lanka January 22-23, 2014

Characteristics of n-Cu₂O/p-CuI junction photo-electrode in relation to solar energy conversion devices

R.D.A.A. Rajapaksha¹, C.A.N. Fernando*¹, K.L. Foo², U. Hashim² and R.G. Balakrishna³

¹Nano-Technology Research Laboratory, Department of Electronics, Faculty of Applied Sciences,
Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka

²Institute of nano-electronic engineering, Universiti Malaysia Perlis, PerlisInderaKayangan, Malaysia

³Center for Nano and Material Sciences, Jain University, Jakkasandra post, KanakapuraTaluk,
Ramangara, Bangalore, India

n-Cu₂O/p-CuI junction photo-electrode was fabricated on copper sheets to make a solid state photo-voltaic cell. A photo current enhancement was found for the junction photo-electrode because of the efficient charge separation process operated at the junction compared to that of the solar cells fabricated from bare semiconductor thin films. Mainly the photo-current generation was found due to the band to band transitions of n-Cu₂O films in the junction photo-electrode. AFM, XRD and optical absorption properties of the materials were studied to explain the photo-current generation of the solar cell. It was found that the sample was highly stable with time under illumination of light. Power conversion efficiency reached is nearly 2.4% for n-Cu₂O/p-CuI junction photo-electrode.

Key words: n-Cu₂O, p-CuI, solid state photovoltaic cell

^{*} nandanaf@phy.ruh.ac.lk