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Abstract

Purpose — Making decisions in finance have been regarded as one of the biggest challenges in the
modern economy today; especially, analysing and forecasting unstable data patterns with limited
sample observations under the numerous economic policies and reforms. The purpose of this paper is
to propose suitable forecasting approach based on grey methods in short-term predictions.
Design/methodology/approach — High volatile fluctuations with instability patterns are the
common phenomenon in the Colombo Stock Exchange (CSE), Sri Lanka. As a subset of the literature,
very few studies have been focused to find the short-term forecastings in CSE. So, the current study
mainly attempted to understand the trends and suitable forecasting model in order to predict the future
behaviours in CSE during the period from October 2014 to March 2015. As a result of non-stationary
behavioural patterns over the period of time, the grey operational models namely GM(1, 1), GM(2, 1),
grey Verhulst and non-linear grey Bernoulli model were used as a comparison purpose.

Findings — The results disclosed that, grey prediction models generate smaller forecasting errors than
traditional time series approach for limited data forecastings.

Practical implications — Finally, the authors strongly believed that, it could be better to use the
improved grey hybrid methodology algorithms in real world model approaches.

Originality/value — However, for the large sample of data forecasting under the normality
assumptions, the traditional time series methodologies are more suitable than grey methodologies;
especially GM(1,1) give some dramatically unsuccessful results than auto regressive intergrated
moving average in model pre-post stage.

Keywords GM(1, 1) model, CSE, GM(2, 1) model, Grey Verhulst, Non-linear grey Bernoulli model,
Decisions in finance

Paper type Research paper

1. Introduction

The time series forecasting is a significant process, which can be widely applied for

generating future predictions based on time-dependent series of observed data points.
Ene Al As a result of combination between mathematical, statistical and economical concepts,

numerous types of forecasting methodologies have been introduced in the last three

decades. Initially, these methodologies have been categorized into three categories as

o oystems: Theory and fundamental, technical (chart techniques) and technological methods (Taylor and Allen,
o e 1992). Furthermore, the fundamental technologies have been classified again into

© B Group Piing Linicd another two categories as qualitative and quantitative (Granger, 1989; Ho et al., 2002).

poroasicsoizois004 1 he qualitative forecasting techniques are more appropriated when the past data are
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not available or limited. However, quantitative forecasting methods totally depend
only on the historical data patterns (see Nobuhiko Terui, 2002; Jain and Kumar, 2007;
Fang et al., 2008; Song et al., 2013).

In the last two decades, thousands of forecasting models have been developed for
analysing time series data under the miscellaneous type of assumptions; especially,
moving average , auto regressive (AR), auto regressive moving average (ARMA), auto
regressive integrated moving average (ARIMA) and weighted moving average
are playing significant role in the literature (Mills, 1990; Zhang, 2003a, b; Ho et al, 2002;
Asteriou and Hall, 2011). However, some of these traditional approaches are not
suitable for forecasting time series data under the modern economical as well as
financial conditions; especially with high volatile fluctuations with unstable data
patterns. As a result, hybrid forecasting models have been created successfully for
forecasting real world problems. In the past two decades, significant number of studies
have done by Granger (1989), Pack (1990), Poli and Jones (1994), Denton (1995), Zhang
et al (1998), Balkin and Ord (2000), Nobuhiko Terui (2002), Ho et al (2002), Zhang
(2003a, b), Pai and Lin (2005), Taskaya and Casey (2005), Chakradhara and Narasimhan
(2007), Jain and Kumar (2007), Khashei and Bijari (2011) and Rathnayaka et al, 2014.
Unfortunately, some of these approaches are more suitable and appropriated just only
for empirical data samples under the normality assumptions. For an example, some
hybrid forecasting models are great at short-term predictions, but cannot capture the
seasonality or variability with very limited number of sample observations; especially
to predict stock price trends for highly non-linear and non-stationary random time
sequences with noise data (Priestley, 1988).

As a result of these complications with traditional time series approaches, grey
modelling concept was proposed by Chinese scholar Deng Ju-long in early 1980s to
solve incomplete, noise and uncertain data in multidisciplinary systems. Within a very
short period, this novel concept was popular and has been successfully applied to
various systems such as financial, economic, energy consumption, military, geological
and agricultural systems (Deng, 1989; Xuerui et al, 2007).

Generally, two grey models are frequently used in the literature. They are; GM(,6)
and grey Verhulst model, where & represent the pth order partial differential
equation. Among them, GM(1, 1) is most suitable for observed data with exponential
distributions. Theoretically, it denotes a single variable first-order linear model which
can be emphasized only for a limited number of data observations required for
constructing the forecasting models. Indeed, the accumulated generating operation
(AGO) is widely used to reduce the randomness of the distribution. It means that, the
new series force to reduce the noise than original series after converting it into a
monotonically increased series. As a result, AGO is more suitable for identifying the
systematic regularity with respect to the time (Deng, 1989).

In the past 30 years, miscellaneous type of research studies have been carried out
to find some accuracy models based on GM(f,6) methodologies. According to the
literature, Trivedi and Singh (1992), Wang and Hsu (1995), Zhou et al. (2006) and
Rathnayaka and Seneviratna, 2014 did remarkable studies to improve the GM(1, 1)
forecasting accuracy rather than traditional approachers; especially, non-linear grey
prediction models such as GM(2,1), grey Verhulst and grey Bernoulli model have
developed for the oscillatory distributions, saturated distributions and highly fluctuate
distributions, respectively. For an example, Zhang (2003a, b), Wang et al (2006) and
Wang et al. (2006) successfully applied the grey Verhulst model for forecasting
long-term road and load traffic accidents in China. Furthermore, the Verhulst model

Grey system
based novel
approach

179




Downloaded by De Montfort University, Professor Sifeng Liu At 03:13 12 January 2016 (PT)

GS
5,2

180

can be widely applied to predict the data in the sequence of non-monotone wave type
characteristic distributions such as life cycle of the product, forecasting the population
growth rates, etc.

The genetic algorithm (GA) based on artificial intelligence is a heuristic
(meta-heuristic) search engine, which has been widely applied to find optimum
solutions in NP hard problems under the non-polynomial conditions (Chang, 2005). In
the recent years, using optimum theory of GAs-based grey hybrid Bernoulli algorithms
have been widely applied in different fileds such as computational science, economics
and finance (Hsu, 2010), manufacturing (Fang et al, 2008; Hsu, 2010, 2003; Hsu and
Chen, 2003) weather forecasting (Nasseri et al.,, 2008; Jin et al., 2008), pharmacometrics,
etc.; especially, researchers have done remarkable studies in finance to forecast price
indices in stock markets around the world (Ji and Zhang, 2011; Kayacan et al, 2010;
Hsu et al., 2009; Chen et al, 2010).

Rates of the equity markets are highly volatile. Within a very short period of time,
the prices of the stocks move up and down with high fluctuations. So, very limited
number of forecasting models can be seen in the literature to forecast the stock market
indices perfectly with limited number of sample observations. So, the main objective of
this study is to examine the most suitable short-term forecasting model for forecasting
stock market price indices in Colombo Stock Exchange (CSE), Sri Lanka. The empirical
results compare with traditional time series approaches such as ARMA, ARIMA and
least squares-based grey models such as GM(1, 1), GM(2, 1), grey Verhulst and new
GA-based non-linear grey Bernoulli model (NGBM). Furthermore, accuracy measures
such as mean absolute percentage error (MAPE), Mean absolute deviation (MAD) and
root mean squared error (RMSE) use to elect the most significant forecasting model
among the others.

The rest of the paper is organized as follows. In Section 2, overview of theoretical
background of traditional time series approaches such as ARMA and ARIMA and
grey theory is discussed. The empirical results with comparisons are shown in Section
3. Section 4 gives the discussion and ends up with the conclusion, policy issues and
future work.

2. Methodology

The high volatile fluctuations with instability patterns are common phenomenon in the
stock markets around the world today; especially, innumerable macro ecconomic and
financial factors are directly affected for generating high volatile fluctuations. Indeed,
the preformances of stock market are positively influence to the economic development
of the country.

The current study mainly deals with mechanisms of explaining the predictive
ability and profitability of technical trading strategies in CSE, Sri Lanka. The
methodology can be described as follows. In the first phase, stock market validations
are identified based on traditional AR methods such as ARMA and ARIMA. In the
next, grey operations such as GM(1, 1), GM(2, 1), grey Verhulst with new proposed GA-
based NGBM are applied to predict future predictions. In the last, test accuracy
techniques are applied to find the suitable model to evaluate short time predictions.

2.1 Overview of grey models accumulation and test of row series: GM(1, 1) model
The grey system theory (GST) was pioneered by Deng Julong in 1982. According to the
explanation, first-order one variable grey model GM(1, 1) plays a significant role in data
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analysing with relatively less data with single time-varying coefficients (Deng, 1989;
Xu et al, 2011; Rathnayaka and Seneviratna, 2014). The GM(1, 1) modelling algorithm
goes through the following steps:

Step 1:

X0 = 1x01),49@), ..., 2Om)|n =4}

Assume that X © is a non-negative raw data series, where an original series of raw data
contains 7 entries.

Step 2:

The first order accumulated generating operation (AGO) of X© series is given by:

AGO(x(O)) :X(D — {x(l)(l),x(l)(Z), e x(l)(n)}

where X is given by:

k
2Dk = Zx(o)(m),k =12 ..., m=>4

m=1

The AGOX " represents the first order accumulated generating operator, which bound
comprises both raw and generated components crystallized as:

¥ D(k) = xO (k) +xD(k—1)

Furthermore, X is the first-order inverse accumulating generation sequence of X
where X O(k) = X V) -XY (B), k=23, ..., n.As an initial condition, X ©(1) = X °(1).
Step 3:
The MEANXXY) denotes the averaging adjoining data in mean consecutive
neighbours generating operator for X

MEAN (X<1>) 70 = Z01),20@2), ..., 2Vm)}

where ZM(k) is given by:

1

Z0(k) = MEANXY = é(X“’(k)+X<1>(1e—1)) h=23 ... =4

Step 4:
Theoretically, AGOx”) represents a monotonically increase series, which
represents the behaviours of first-order differential equation. Therefore, the solution

curve of the first-order differential equation represents the approximation of AGOx®)
series as:

i o)
——4ax'’’ =b
ar
where both “a” and “b” are the interim parameters (developmental coefficient) of
prediction values of the grey model, respectively. The ¥?(1) = 56(0)(1) is the initial
condition of the model.
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According to the definition, di'” /dt can be defined as follows:
) (1) _~D
dx — lim * (t+AH—x(t)
dt a0 At

If the sampling time interval Af is unit, then we can assume that, A/—1. So equation
can be reduced as:

)

i
= 2 xOF+)—xOE):k=1,2,3, ..., n @

Based on Equations (1) and (2), the whitenization equation can be defined as follows:
1 O®R) +azVk) =0 F=2,3,....n 3

The undetermined parameters ¢ and b are called developmental coefficient and grey
input, respectively. The zV(k) is said to be mean series of xM(k).

Step 5:

To estimate the developing coefficient of grey inputs ¢ and b, the least square
estimators with augmented matrix can be obtained as follows:

£0(2) —-=z20@) 1
x0(3) -20@) 1 /4

S : : (b) @
£0(72) —20m) 1

Q -1
where ,, = BU, m = (B"B) B'Y,
Where B and Y imply the accumulated matrix and constant vector, respectively.
Step 6:

According to the first-order differential equation method, the particular solution of
the AGO Grey prediction can be approximate as follows:

k(l)(k+1) = {x(l)(l)—ﬂ ea(kil) +§a k= 1’ 2’ ce N

where x0(1) = 29(1).

Step 7:

Substitute AGO (inverse accumulated generating operation IAGO)) operator from
Step 2, the simulation function of 30 (k+1) can be obtained as follows:

FO%+1) = 01— [x“’)(l)—ﬂ k=12 ..,n

where #9(1),29©), ..., 3% and i%n+1), XOm+2), ... are GM(,1) fitted
values and forecast values, respectively.

2.2 GM(2,1) Model
In the past decades, numerous type of methodologies have been developed based on the
GSTs with GM(1, 1) methodologies; especially GM(2, 1) model has been developed for
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forecasting non-monotonic sequences with very limited sample observations. The
theoretical background of GM(2,1) has gone as follows (see Lin and Xiao, 2008;
XA et al, 2011; Sheu et al, 2014).

Assuming that the original raw data sequence is located as follows:

XO = (x01),202), ..., xOm)|n =>4}

Steps 1 and 2 are going similar way as GM(1, 1).

Step 3:

The series JAGOX? is a first-order IAGO, which subtracting the adjoined data
in succession:

TAGO(X®) = XV = (¢ D), D@), .., 2 V0n)

For ¥7Y(k) € IAGOX"Y), satisfies that, ¥~ (k) = xO(k)—xV(k-1) and +~ (1) = +0(1).
Step 4:
Based on Steps 1-4, the differential equation of grey model GM(2,1) and its
whitenization equations can be expressed as follows:

x(—l)(k)+ax(0)(k)+cz(1)(k) =) k= 2,3, A )

2~(1) ~(1)
CX Oy = bk =123, . n

ar’ dt
where a, ¢ and b are the interim parameters. The augmented matrix is given by:
#(2) —x0@2) -2 1
AD(3) —0@3) 2@ 1 | [
#Dn) —Om) =2V 1 |\
a
A TR\ pT
where ¥, =BU, | ¢ | = (B B) B'Y,
b

where B implies the accumulated matrix and Y denotes the constant vector.

Step 5:

The characteristic function for quadratic Equation (4) is (Washington, 2000,
Rich and Schmidt, 2004; Aitken, 2013):

Jp= _“;—r A A= V=i

Based on the discriminant of characteristics, the simulation functions of XP(k+1) can
be defined as follows:

Ciehh+ Coe??h 4+ ifA>0
XO(k+1) = { HCi+Cok)+2 ifA =0
Ci cos (§k+Co)e %42 ifA <0

where C; and C, are undetermined coefficients.
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Step 6:
To simulate the predicted values of the (2, 1), {56(0)(1),56(0)(2), - J%(O)(n)} can be
obtained after applying the IAGO predicted equation as follows:

BO%+1) = iVk+1)-2VRk) k =1,2,3,.. .1
where ¥ +1), 3% +2), ¥ (n+3), ... are forecast values of the GM(2, 1).

2.3 NGBM
By using consepts of traditional GM(1, 1) with Bernoulli methodology, the numerous
type of NGBMs were introduced and developed for forecasting limited number of raw
data samples in the literature. The NGBM methodology is constructed as follows (Hsu,
2010; Xu et al., 2015).

The Steps 1 and 2 are going same as GM(1, 1).

Step 3:

The NGBM with its whitenization equation for the non-negative original data
sequence by X9 = {xO(1), x9©), ..., xm)ln=4 can be defined as follows:

KO +azV(k) = b[2V(k)] k=2,3,..,nandy =23, ...

axv )

——+ax® = p(xV

= (=)
where ¢ and b are unknown parameters. The system can be converted into the
augmented matrix as follows:

20(2) -2 (V)
¥0(3) -203) (V@) a

: - : : b)
2O (n) —2Dm)  (2V(m)) !

a -1
where Y,,=BU, [ b} = (BTB> B"Y, where B and Y imply the accumulated matrix

and constant vector, respectively.

Step 4:
Based on the dimentions of y, the model selection critea can be difined as follows:
GM(1,1) ify=0
Grey Model = { Grey—Verhulst ify=2
NGBM ify=>2

If y = 2; the Grey-Verhulst model.

Based on the grey system methodology, the new concept was introduced by Pierre
Franois Verhulst for forecasting exponential behavioural data patterns. The new
methodology can be defined based on following steps (Guo et al., 2005; Wu and Chen,
2005; Bin and Sheng, 2010; Chen et al.,, 2010; Yi-Zhang, 2012; Zhou, 2013).
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The time response sequence of grey Verhulst model can be written as:

D) —
) = B Ce

where C = |1=—D| and D = £, If y > 2; the NGBM model.

- [0 ¢ i y>2 the NGB | |
According to the first-order differential conditions, the perticular solutions for
whitening equation can be expressed as:

'%(l)(k_i_l) — [(x(O)(l)l—n_D)e—a(l—n)k+D]

Step 5
To be obtained the fitted values and predicted values, the IAGO can be applied:

FO%+1) =iV +1)-2VR)E=1,2,3, ..., n

VA 2 andk=1,2.3, ...

A1) =20)

where ¥ +1),3%(n+2), 2Y(n+3), ... are forecast values of the grey Verhulst
model.

2.4 Model accuracy testing
Time series forecasting can be comprehensively considered as a method or a technique
for predicting future aspects of many operations. To pick out the suitable model for
forecasting, three model accuracy standards are employed. They are MAD, MAPE and
RMSE methods were used.

The accuracy models are define as follows:

©)(1)__~0)
1 ‘x (k)—x (k)’
MAPEZ%;W

MAD = li ]x@) (k)—fc(o)(k)’
i

S (<0w-3m)

n

RMSE =

where (k) and £© (k) represent observed and forecast values, respectively. Table I
represents the scale of judgement of forecast accuracy regarding the error (MAPE) and
clearly indicates that, the minimum values of MAPE make more accuracy for
forecasting future predictions (Rathnayaka and Seneviratna, 2014):

MAPE (%) Judgement of forecast accuracy
<10 High accurate

11-20 Good forecast

21-50 Reasonable forecast

> 51 Inaccurate forecast
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Table II.
Stationary and
non-stationary
model checking

3. Empirical results

The current study was carried out on the basis of secondary data, which were obtained
from CSE, annual reports from Central Bank of Sri Lanka, CSE account holders,
background readings and other relevant sources, etc.

The CSE is the main stock exchange in Sri Lanka with a fully automated trading
platform with a well-organized manner than other exchangers in South Asia. As a
developing stock exchange, high volatile fluctuations with instability patterns are
common phenomenon in the CSE; especially after finishing the civil war in 2009. The
data patterns in Figure 1 clearly show that, the stock indices are highly non-linear and
non-stationary in the past three years between January 2012 and March 2015.

This study mainly attempted to understand the trend and cyclic patterns in the CSE
in order to predict the future behaviours in two major stock indices including All Share
Price Index (ASPI) and S&P Sri Lanka 20 Price Index (S&P SL20). Based on their last
two quarter performances from October, 2014 to March, 2015, daily trading data were
extracted and tabulated for calculations. In this study, the traditional forecasting
approaches namely ARIMA with new grey operational models such as GM(1, 1), GM
(2,1), grey Verhulst and NGBMs were used as a comparison purpose.

3.1 Simulation results

As an initial step, stationary and non-stationary conditions were measured based on
two different unit root statistics, namely, augmented Dickey-Fuller and Phillips-Perron
test statistics. Table II results clearly suggested that, ASPI data are non-stationary in

Test critical values Test critical values

Level data 1st difference data
Index ADF PP Index ADF PP
ASPI 0.2409 0.5523 ASPI 0.0002 0.0002
SL20 0.0198 0.0003 SL20 0.0000 0.0000

Notes: MacKinnon (1996) one-sided p-values; null hypothesis: D(ASPI) and D(SL20) have unit root

Figure 1.
ASPI fluctuations
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their levels, but stationary in their first difference under the 0.05 level of significance.
However, as a just launched index, S&P Sri Lanka 20 (SL20) has been still fluctuating
under the stability manner.

As a next step, the appropriate ARMA and ARIMA forecasting models were
identified based on the minimum values of Akaike information (AIC), Schwarz (SC) and
Hannan-Quinn criterion (HQC).

The results in Table III clearly indicated that, ARIMA(0,1,1) ((AIC (10.7989), SBIC
(10.8357), and HQIC (10.8131)) ARMA(2,1) (AIC (10.1917), SBIC (10.3042) and HQIC
(10.2348)) are the most suitable models for forecasting future predictions in ASPI and
SL20, respectively. As a next step, up coming week values were forecasted using four
different types of grey operational models, namely, GM(1, 1), GM(2, 1), grey Verhulst
and new proposed NGBM.

Tables IV and V results show the measures of corresponding forecasting errors with
respect to the five different models. These results clearly suggested that, grey
prediction models generate small forecasting errors than traditional time series
approaches for the limited data forecasting. However, for the large sample of data
under the normality assumptions, traditional time series methodologies are more
suitable than grey methodologies; especially GM(1,1) give some dramatically
unsuccessful results than ARIMA in model pre-post stage.

Based on these results, we suggested that, NGBM model is better both in model
building and ex post testing under the s-distributed data patterns. Furthermore,
GM(1,1) is useful only for the short-term predictions. The results are coincided
with some previous research works which have done based on GM(1,1)
accuracy testing’s (Wu and Chen, 2005; Bin and Sheng, 2010; Wang, 2002).

4. Conclusion and future work

The economic data forecasting under the limited data patterns have been created
big challenge in the modern economy today. Miscellaneous types of studies have
been carried out to in literature to find out the forecasting patterns under the areas in
finance and investments. However, most of them are not full suitable for
forecasting’s under the modern economic conditions. As a result, based on long-term
and short-term operational strategies, GSTs introduced by Deng Ju-long in 1982
under the three different criterions; they are, incidence analysis, clustering analysis
and forecasting.

As a subset of this literature, very few studies have focused to find the short-term
forecasting with limited sample observations (weekly, monthly or quietly) in CSE.
Therefore, the first time of literature, this current study focuses to examine the
forecasting models over the two quietly period for 2014 October 2014 to December 2014
and 2014 December to 2015 March. The model accurate results in MAPE evidenced
that, MAPE [NGBM] < MAPE [Grey-Verhulst] < MAPE[GM(2,1) < MAPE [GM(1, 1)])
NGBM is more significant and make higher performances in model fitting as well as
forecasting under the s-distributed data patterns. Indeed, result suggested that MAPE
[Grey-Verhulst] > MAPE [GM(2, 1) > MAPE [GM(1, 1)) GM(1, 1) and GM(2, 1) are more
accurate only for short-term than long-term predictions which can be easily applicable
for monotonous variety process. The current study is totally coincided with Yu et al.
(2000), Li et al (2011), Wang (2002) who have done research works based on
miscellaneous type of real world applications relates to the China.

Because of the chaotic and non-stationary behavioural fluctuations, it could be
better to use the improved grey methodologies using hybrid models based on neural
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network and GA in real world model fitting and forecasting’s. Finally, we strongly
believed that, current study makes significant contribution to policy makers as well as
government to open up new direction to develop the CSE investments in Sri Lanka.
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