ISSN: 1391-8796

Proceedings of 10th Ruhuna International Science & Technology Conference University of Ruhuna, Matara, Sri Lanka

January 18, 2023

Application of Ag/TiO₂ Composite for Wastewater Treatment

Tharaka A.A.W. and Siriwardana W.K.K.D.*

Department of Chemistry, University of Ruhuna, Wellamadama, Matara, Sri Lanka.

Wastewater containing dyes is a significant polluter of the environment which also affects human health, as textile industries generate large amounts of highly colored wastewater containing a diverse range of persistent pollutants. Titanium dioxide (TiO₂) has been widely used in photocatalytic conversion reactions. Wide band gap (~ 3.2 eV) of TiO₂ allows the absorption of UV light only, hence lowering the efficiency of photocatalysis under solar irradiation. Reported herein is a novel green synthesis approach for Ag/TiO₂ composite which can act as an adsorbent and a photocatalyst in removal of MB. Incorporation of silver nanoparticles (AgNPs) to TiO₂ has been proven to be effective in enhancing visible light absorption. Tea extract was used as a reducing and stabilizing agent in AgNP synthesis. Adsorption capability and photocatalytic activity of Ag/TiO₂ composite was studied using MB and compared with TiO2. Adsorption capability was studied by measuring the change in concentration of MB in a mixture of a MB solution and the catalyst kept in dark. Within the first few minutes, ~ 70 and 12 % of MB were adsorbed onto Ag/TiO₂ and TiO₂, respectively. Removal of ~ 90 and 35 % MB was observed by 1 h solar irradiation of the dye containing samples having Ag/TiO₂ and TiO₂, respectively. Ag/TiO₂ composite prepared by this method acts as a more efficient adsorbent and a photocatalysts than TiO₂ in removal of MB and it is a potential material for treatment of wastewater containing MB. The reported synthesis procedure is straightforward, economical, scalable, and effective.

Keywords: Silver nanoparticle, Titanium dioxide, Green synthesis, Adsorption, Photocatalysis.

^{*}Corresponding author: wkkdsiriwardana@chem.ruh.ac.lk