

UNIVERSITY OF RUHUNA – FACULTY OF ALLIED HEALTH SCIENCES DEPARTMENT OF PHARMACY

FOURTH BPHARM PART II EXAMINATION – OCTOBER/NOVEMBER 2022 PH 4241 RADIO PHARMACY – SEQ

TIME: TWO HOURS

INSTRUCTIONS

- There are four questions in this SEQ paper.
- Answer all questions.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.
- Use illustrations where necessary.

01.	
1.1. What are radiopharmaceuticals?	(15 marks)
1.2. Define the term "physical half-life" of a radioisotope.	(15 marks)
1.3. Write the equation to calculate the activity of a radioactive source after time "t".	(10 marks)
1.4. Physical half-life of sodium iodide (131I) is 8 days and the reference date a	nd time of a
container of 100 mCi is 15th Oct 2022; 5.30 pm. Calculate the activity of the container of 100 mCi is 15th Oct 2022; 5.30 pm.	ontainer on,
1.4.1. 15 th Oct 2022; 8.30 am	(15 marks)
1.4.2. 16 th Oct 2022: 8.30 am	(15 marks)
1.5. Convert 100 mCi activity into MBq.	(15 marks)
1.6. Define the term "effective half-life" of a radiopharmaceutical.	(15 marks)
(minus 25) vycosyody, lisaltosomyniquiber e sa gaindas	
02.	
2.1. List five benefits of ^{99m} Tc radioisotope in nuclear imaging.	(10 marks)
2.2. Briefly describe the transient equilibrium of ⁹⁹ Mo- ^{99m} Tc using the time-activity	y graph.
	(25 marks)
2.3. Using a labeled diagram, briefly explain how the 99mTc elutes from a generator	r. (25 marks)
2.4. Draw a graph to show the variation in daughter product activity and parent activity	vity over time
when eluted daily from the technetium generator.	(20 marks)
2.5. Briefly describe the role of a generator in nuclear imaging.	(20 marks)

3.1. Define the absorbed dose of ionizing radiation.

(10 marks)

3.2. Briefly explain the difference between absorbed dose and equivalent dose. (15 marks)

- 3.3. Gamma radiation has deposited 3J of energy in a person with 60 kg of weight. Radiation weighting factor for alpha, beta and gamma radiations are 20, 1 and 1 respectively.
 - 3.3.1. Calculate the absorbed dose received by the above person.

(10 marks)

- 3.3.2. If the person additionally receives 0.01Gy dose from alpha radiation and 0.02 Gy dose from beta radiation, calculate the total equivalent dose to tissue. (20 marks)
- 3.4. The exposure rate at 1m distance from a ¹³⁷Cs source is 500 mR/ hr. Calculate the exposure to a person who stays for 30 minutes at a distance of 2m from the source. (20 marks)

3.5.

- 3.5.1. Name a radionuclide used in the gamma sterilization process. (05 marks)
- 3.5.2. Briefly describe the advantages of using gamma radiation for surgical instrument sterilization compared to heat steam sterilization.

04.

- 4.1. Briefly explain the following with regards to ionizing radiation giving two examples for (20 marks)
 - 4.1.1. Stochastic effect
 - 4.1.2. Deterministic effect
- 4.2. Write the recommended whole-body annual dose limits for occupational and public exposure.
- 4.3. Briefly describe the personal radiation safety steps that should be taken by a radiopharmacist (25 marks) before entering to a radiopharmaceutical laboratory.
- 4.4. Briefly explain how you would decontaminate the working area of LAF cabinet before (30 marks) starting a preparation.
- 4.5. List five information that should be included in the label of a radiopharmaceutical syringe. (15 marks)