University of Ruhuna-Faculty of Technology

Bachelor of Engineering Technology and Information & Communication Technology Level 1 (Semester 1) Examination, July 2017

Course Unit: TMS 1113 Foundation of Mathematics Time Allowed 3 hours

Answer all Six (06) questions. Calculators are allowed to use for calculations.

All symbols have their usual meaning [Any common values Ex: Acceleration of gravity, g = 9.8 ms⁻²]

- 1. All questions have only one correct answer. Underline the correct answer.
 - 1.1. The relationship between the temperature in degrees Fahrenheit (F) and the temperature in degrees Celsius (C) is given by following equation:

$$F = \frac{9}{5}C + 32$$
. Then 135° F is equivalent to:

- (a) 43 °C
- (b) 57.2 °C
- (c) 185.4 °C
- (d) 184 °C

- 1.2. $1\frac{1}{3} + 1\frac{2}{3} \div 2\frac{2}{3} \frac{1}{3}$ is equal to:
 - (a) $1\frac{5}{9}$
- (b) $\frac{19}{24}$
- (c) $2\frac{1}{21}$
- (d) $1\frac{2}{7}$

1.3. The solution of the inequality

$$\frac{3t+2}{t+1} \le 1 \text{ is:}$$

- (a) $t \ge -2\frac{1}{2}$ (b) $-1 < t \le \frac{1}{2}$ (c) $t \le -\frac{1}{2}$ (d) $-\frac{1}{2} < t \le 1$
- 1.4. $(\sqrt{x})(y^{3/2})(x^2y)$ is equal to:

- 1.5. The second moment of area of a rectangle through its centroid is given by $\frac{bl^3}{12}$. The approximate percentage change in the second moment of area if b is increased by 3% and l is reduced by 2% is:
- (b) + 1%
- (c) + 3%
- (d) -3%
- 1.6. A pendulum of length 1.2 m swings through an angle of 120 in a single swing. The length of arc traced by the pendulum bob is:
 - (a) 14.40 cm
- (b) 25.13 m
- (c) 14.40 m
- (d) 45.24 m
- 1.7. In the range $0^{\circ} \le \theta \le 360^{\circ}$ the solutions of the trigonometrical equation $9\tan^2\theta - 12\tan\theta + 4 = 0 \text{ are:}$
 - (a) 33.69°, 146.31°, 213.69° and 326.31°
 - (b) 33.69°, and 213.69°
 - (c) 146.31° and 213.69°
 - (d) 146.69° and 326.31°
- **1.8.** If $A = \begin{pmatrix} -3 & 0 \\ 7 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -1 \\ -7 & 4 \end{pmatrix}$. Find 2A 3B.

 - (a) $\begin{pmatrix} 0 & 3 \\ 35 & -20 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -3 \\ -35 & 20 \end{pmatrix}$
 - (c) $\begin{pmatrix} -12 & 3 \\ 35 & -20 \end{pmatrix}$ (d) $\begin{pmatrix} 12 & 0 \\ 35 & -20 \end{pmatrix}$

的社会

- 1.9. If $\cos A = \frac{12}{13}$, then sin A is equal to:
 - (a) $\frac{5}{13}$
- (b) $\frac{13}{12}$
- (c) $\frac{5}{12}$

1.10. The area of the path shown shaded in following figure is:

a cine grow that odd evide ("11) ristens seemen field below (\$ 2.0) prode oil affect 3.2

(a)
$$300 \text{ m}^2$$

(d)
$$66 \text{ m}^2$$

(10 Marks)

2. Let a some a some service of the sound of

2.1 Compute the determinant of the matrix A shown below.

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 6 & 1 \\ -5 & 2 & 1 \end{pmatrix}$$

2.2 For the matrices B and C shown below, compute D = B - C.

$$B = \begin{pmatrix} 2 & 7 & -5 \\ -2 & 1 & 0 \\ 6 & 3 & 4 \end{pmatrix} \quad C = \begin{pmatrix} 3 & 1 & -4 \\ 4 & 3 & 1 \\ 1 & 4 & -3 \end{pmatrix}$$

2.3 Compute G = EF for the matrices shown in below.

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix} \quad \mathbf{F} = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 3 & 2 \\ 3 & 2 & 0 \end{pmatrix}$$

2.4 Compute the inverse of following matrix H.

$$H = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

2.5 Using the above (Q.2.4) calculated inverse matrix (H⁻¹) solve the following sets of equations.

$$2x_1 + 4x_2 - 2x_3 = -16$$

$$-x_1 + x_2 + 3x_3 = 7$$

$$3x_1 + 2x_2 + x_3 = 4$$

(18 Marks)

3.

3.1 Find the length of AC and AB when angle $A = \pi/3$ and angle $B = \pi/2$.

- 3.2 Two ships leave a port at the same time. One travels due west at 18.4 km/h and the other due south at 27.6 km/h. Calculate how far apart the two ships are after 4 hours.
- 3.3 Perform the following calculations

3.4 The angle of depression of a ship viewed at a particular instant from the top of a 75 m vertical cliff is 30°. Find the distance of the ship from the base of the cliff at this instant. The ship is sailing away from the cliff at constant speed and 1 minute later its angle of depression from the top of the cliff is 20°. Determine the speed of the ship in km/h.

2.2 For the roat less B and C shows belo

3.5 Show that the following equation is correct.

$$\frac{\cos(45-\theta)}{\cos 45 \cdot \cos \theta} - \tan \theta = 1$$

(18 Marks)

4.

4.1 When Kirchhoff's laws are applied to the electrical circuit shown in following figure the currents I₁ and I₂ are connected by the equations:

$$27 = 1.5I_1 + 8(I_1 - I_2)$$

$$-26 = 2I_2 - 8(I_1 - I_2)$$
(1)
(2)

Solve the equations to find the values of currents I_1 and I_2 .

4.2. Given that:
$$\frac{D}{d} = \sqrt{\frac{f+p}{f-p}}$$
 Express p in terms of D, d and f.

- 4.3. The roots of quadratic equation are 1/3 and -2. Determine the equation.
- 4.4 Solve by using the quadratic formula.

(a)
$$x^2 + 2x - 8 = 0$$

(b)
$$3x^2 - 11x - 4 = 0$$
.

4.5 The height "s" meters of a mass projected vertically upward at time "t" seconds is

$$s = ut - \frac{1}{2}gt^2$$

Determine how long the mass will take after being projected to reach a height of 16 m,

- (a) on the ascent
- (b) on the descent,

when u = 30 m/s and $g = 9.81 \text{ m/s}^2$.

(18 Marks)

5.

5.1 (a) Multiply
$$3x - 2y^2 + 4xy$$
 by $2x - 5y$

(b) Divide
$$4a^3 - 6a^2b + 5b^3$$
 by $2a - b$

5.2 Simply the followings:

(a)
$$\frac{x^2y}{xy^2-xy}$$

(a)
$$\frac{x^2y}{xy^2-xy}$$
 (b) $(p^3)^{1/2}(q^2)^4$

(c)
$$\frac{(mn^2)^3}{(m^{1/2}n^{1/4})^4}$$
 (d) $\frac{(x^2y^{1/2})(\sqrt{x}\sqrt[3]{y^2})}{(x^5y^3)^{1/2}}$

5.3 Evaluate the followings:

(a)
$$\frac{\log 25 - \log 125 + \frac{1}{2} \log 625}{3 \log 5}$$

(b) If
$$Log_{10} 2 = 0.3010$$
; $Log_{10} 3 = 0.4771$, find the value of x; $2^{3x+1} = 3^{2x-5}$

(c)
$$\frac{\ln e^{2.5}}{\log 10^{0.5}}$$
 (c) anneal of the second o

- 5.4 The resistance R of an electrical conductor at temperature θ^0 C is given by R= R₀ $e^{\alpha\theta}$, where α is a constant and R₀=5×10³ Ω .
- (a) Determine the value of α , correct to 4 significant figures, when $R = 6 \times 10^3 \Omega$ and θ=1500 °C.
- (b) Also, find the temperature, correct to the nearest degree, when the resistance R is 5.4×10^{3} Ω.

(18 Marks)

- 6.1 A force of 6 N is included at an angle of 450 to a second force of 9 N, both forces acting at a point. Find the magnitude of the resultant of these two forces and the direction of the resultant with respect to the 9 N force by both the 'nose-to-tail' methods.
- **6.2** Accelerations of $A_1 = 2.5 \text{ ms}^{-2}$ at 90° and $A_2 = 5.2 \text{ ms}^{-2}$ at 145° act at a point. Find $A_1 + A_2$ and A₁-A₂ by:
 - (i) drawing a scale vector diagram and
 - (ii) by calculation

- I. Write the elements in each set \mathcal{E} , A and B
- II. Draw and shade $A \cap B$ on a Venn diagram, and write the set.
- III. Draw and shade $A \cup B$ on a Venn diagram, and write the set.
- 6.4 For any sets A, B and C then prove that

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$