## University of Ruhuna

## B.Sc.(General) Degree

## Level I (Semester I) Examination - December 2020

Subject: Applied Mathematics

Course Unit: AMT112 $\beta$ 

(Mathematical Foundation of Computer Science)

Time: Two (02) Hours

## **Answer All Questions**

| 1. | a) Show that, $p \leftrightarrow \sim q$ and $p \to q$ are not logically equivalent using a <b>truth table</b> .                                                                 | [10]                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|    | b) Show that $\sim (p \vee (\sim p \wedge q)) \equiv (\sim p \wedge \sim q)$ using laws of propositions.                                                                         | [20]                         |
|    | c) Write the <b>negation</b> of "For a real number $x$ , if $x > 3$ then $x^2 > 9$ ".                                                                                            | [20]                         |
|    | d) Write the inverse of "If today is Sunday, then it is a holiday".                                                                                                              | [05]                         |
|    | e) Using pattern proof, show that $t$ is a valid conclusion from the premises; $p \to q$ $r \to s, \sim s, p \lor t$                                                             | $q, q \rightarrow r,$ $[20]$ |
|    | f) Consider the following;                                                                                                                                                       | [20]                         |
|    | "All people are responsible. Anyone who is responsible and wear masks can free from Covid-19. Anyone who is free from Covid-19 will be happy. Sarath is a person wearing masks". |                              |
|    | (i) Change the above facts into predicate forms.                                                                                                                                 | [10]                         |
|    | (ii) Translate above predicate forms into clauses.                                                                                                                               | [10]                         |
|    | (iii) Using Resolution Principle prove that, "Sarath will be happy".                                                                                                             | [20]                         |
| 2. | a) Simplify 11110111.1 / 1111                                                                                                                                                    |                              |
|    |                                                                                                                                                                                  | [10]                         |
|    | b) Using computer method, convert 11110.011 <sub>2</sub> into decimal.                                                                                                           | [15]                         |
|    | c) A computer has a word length of 8 bits and uses two's complement method for calculateral Translate -109 into the number format used by the above computer.                    |                              |
|    | d) Using two's complement, perform the followings;                                                                                                                               | [15]                         |
|    | (i) 17 - 73 in a 8 bits word length computer.                                                                                                                                    |                              |
|    | (ii) 119/7                                                                                                                                                                       | [20]                         |
|    |                                                                                                                                                                                  | [40]                         |
| 3. | a) For all $A$ , $B$ in a Boolean Algebra $\mathfrak{G}$ , prove $A + (A.B) = A$                                                                                                 | [10]                         |
|    | b) Find the dual of the Boolean expression $A + (AA') + (B.A) = 1$                                                                                                               |                              |
|    | c) Define;                                                                                                                                                                       | [10]                         |
|    | (i) a fundamental product,                                                                                                                                                       | [05]                         |
| -  | (ii) a sum of product expression,                                                                                                                                                | [05]                         |
|    | (iii) a complete sum of product form.                                                                                                                                            | [05]<br>[05]                 |
|    |                                                                                                                                                                                  | [00]                         |

- d) (i) Sketch the logic circuit for the Boolean expression E(x,y,z)=z(x'+y)+y' [10]
  - (ii) Find the complete sum-of-product form of the above Boolean expression. [15]
- e) Use Karnaugh maps to simplify each of the following Boolean expression;

(i) 
$$A'B'C' + A'B'C + A'BC' + AB'C$$
 [20]

(ii) 
$$A'B'C' + A'BC' + ABC' + AB'C$$
 [20]

4. a) Prove the correctness of the following Hoare Triple using assignment rule;

$$\{y > 0\}\{x = y + 3\}\{x > 3\}$$

b) Prove the correctness of the following using loop rule;

[20]

```
i = 0; y = 1;
if \ x \le 0 \ then \ return \ "error"
else
\{ \\ while (y < x) \{ \\ i = i + 1; \\ y = 2 * y; \\ \} 
\}
return \ i
```

- c) Using direct proof, show that if p and q are both perfect squares, then pq is also a perfect square.

  [10]
- d) Using contrapositive proof, show that if m = ab where a and b are positive integers, then  $a \le \sqrt{m}$  or  $b \le \sqrt{m}$ .
- e) A person deposits Rs. 10000 in a savings bank account at a bank yielding 9% per year with interest compounded annually.
  - (i) Find a reccurence relation which satisfies the amount in the account after n years. [10]
  - (ii) Use expand guess and verify method to find the closed-form solution of the recurrence relation you have found above. [20]
- f) The first 4 numbers of a sequence are given by 7, 14, 23 and 34. Find a recurrence formula of the form S(n) = S(n-1) + g(n) for the  $n^{th}$  term in the sequence. [10]

\*\*\*\*\*\*\*\*\*\*\*