University of Ruhuna

Bachelor of Science General Degree Level I (Semester I) Examination

December 2020

Subject: Mathematics
Course Unit: MAT1142 (Mathematics for Biology)
Time: Two (02) Hours
Answer ALL questions. Calculators will be provided.

1. a) Consider the complex number $z=5+i 3$, where i is the imaginary unit.
(i) Write down the complex conjugate, \bar{z} of z
(ii) Show that $z+\bar{z}$ and $z \bar{z}$ are real numbers.
[15 marks]
b) Find α and β such that $\frac{2+i}{1-i}=\alpha+i \beta$, where i is the imaginary unit.
[15 marks]
c) Using the Binormial theorem, show that

$$
\left(m-\frac{3}{n}\right)^{4}=m^{4}-\frac{12 m^{3}}{n}+\frac{54 m^{2}}{n^{2}}-\frac{108 m}{n^{3}}+\frac{81}{n^{4}}
$$

[30 marks]
d) (i) Solve the equation :

$$
\log _{2}(x-2)+\log _{2} 5=\log _{2} x+\log _{2} 3 .
$$

(ii) The relation between hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$and pH value of the solution is given as

$$
\mathrm{pH}=-\log _{10}\left[H^{+}\right] .
$$

Calculate the hydrogen ion concentration, when pH value is 4 . [20 marks]
e) Prove that

$$
\sin 2 \theta(\tan \theta+\cot \theta)=2
$$

2. a) Find $\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3}$.
[10 marks]
b) The population N of the herd of elk is modeled by

$$
N(t)=\frac{10(3+4 t)}{1+0.1 t}
$$

(i) Calculate the size of the herd alter 10 years.
(ii) According to the model, determine the limitation size of the herd as time progression.
[20 marks]
c) Find the first derivative of the following functions:
(i) $y=2+3 x+\sin x$
(ii) $y=\left(x^{3}+5\right)^{3}$
(iii) $y=\ln x+e^{x}$
(iv) $y=\frac{3 x^{2}-5}{2 x+1}$.
[40 marks]
d) Find the turning point(s) of the funcrion

$$
y=x^{3}-3 x \text {. }
$$

Determine whether the turning point(s) is/are maximum, minimum or point(s) of inflexion using the second derivative of y.
[30 marks]
3. a) A three variable function is given by

$$
p(x, y, z)=x^{3} y^{2} z+x z+x^{2} y .
$$

(i) Find the partial derivatives $\frac{\partial p}{\partial x}, \frac{\partial p}{\partial y}$ and $\frac{\partial p}{\partial z}$.
(ii) Show that the total differential of the function p at the point $(1,2,3)$ is given by

$$
d p=43 d x+13 d y+5 d z
$$

b) The coefficient of a cubic expression of a gas, α is derived as

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

where V, T, and P are volume, temperature and pressure respectively.
Calculate the value of α when $P(V-b)=R T$, where b is a constant.
[15 marks]
c) The following data represent the costs (in Rupees) of a sample of 10 postal mailings by a company:
$30,62,45,78,36,62,76,51,98,42$
Calculate
(i) mean,
(ii) median,
(iii) mode,
(iv) range,
(v) mean deviation,
(vi) sample variance and
(vii) standard deviation
of the costs of sample.
[55 marks]
4. a) Evaluate the following indefinite integrals:
(i) $\int\left(3 x^{2}+\frac{2}{x}-2\right) d x$
(ii) $\int \frac{\cos \theta}{2 \sin \theta-1} d \theta$
(iii) $\int\left(e^{5 x}+\cos 3 x\right) d x$
[35 marks]
b) It is given that $\int_{m}^{n}(2 x-1) d x=4$ and $\int_{m}^{n} d x=1$. Find m and n.
[20 marks]
c) Consider the differential equation:

$$
\left(2 x y-3 x^{2}\right) d x+\left(x^{2}-2 y\right) d y=0 .
$$

Show that the above differential equation is exact and solve it.
d) An evergreen nursery usually sells a certain shrub after 6 years of growth and the growth rate during that period is approximated by

$$
\frac{d h}{d t}=1.5 t+5
$$

where t is the time in years and h is the height in centimeters. The seedlings are 12 cm tall when planted $(t=0)$.
(i) Find the height of shrubs after t years.
(ii) How tall are the shrubs when they are sold?

