

UNIVERSITY OF RUHUNA FACULTY OF SCIENCE

BACHELOR OF SCIENCE GENERAL DEGREE LEVEL II (SEMESTER I) - END SEMESTER EXAMINATION - JANUARY, 2022

Subject: Mathematics

Course Unit: MAT 211β - Linear Algebra

Time Allowed: 2 Hours

Answer ALL Questions

1. Let
$$A(\alpha) = \begin{bmatrix} 1 & 0 & \alpha \\ -\alpha & 1 & -\frac{\alpha^2}{2} \\ 0 & 0 & 1 \end{bmatrix}$$
; where $\alpha \in \mathbb{R}$.

(a) (i) Show that $A(\alpha)A(\beta) = A(\alpha + \beta)$ for $\alpha, \beta \in \mathbb{R}$.

[20 marks]

(ii) **Deduce** that $A(\alpha)A(-\alpha) = I_3$.

[15 marks]

(iii) Using the Principle of Mathematical Induction or otherwise, show that

$$(A(\alpha))^n = A(n\alpha), \text{ for all } n \in \mathbb{Z}^+.$$

[20 marks]

15 marks

(iv) Hence, find $[(A(\alpha))^n]^{-1}$, the inverse of $(A(\alpha))^n$, for $n \in \mathbb{Z}^+$. (v) Let $B = \begin{bmatrix} A(-1) & I \\ \hline 0 & A(1) \end{bmatrix}$ be a block matrix. Show that $B^{-1} = \begin{bmatrix} A(1) & -I \\ \hline 0 & A(-1) \end{bmatrix}$.

[20 marks]

- (b) Now, let C = A(-1). Express C as LU, where L is a unit lower triangular matrix and [10 marks] U is an upper triangular matrix.
- 2. (a) Let $\alpha, \beta \in \mathbb{R}$ and consider the system of linear equations $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \alpha \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ \beta \end{bmatrix}.$$

Determine for which values of α and β this system has:

(i) a unique solution,

[10 marks]

(ii) no solutions,

[10 marks]

(iii) infinitely many solutions.

[10 marks]

(iv) In case of (iii), solve the system using elementary row operations and express the solution in the form, x = p + tv, where t is a parameter and p and v are vectors to be determined.

(b) Let V be the vector space $\mathbb{R}^3(\mathbb{R})$ with the Euclidean inner product. Apply the Gram Schmidt process to transform the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, where $\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (0, 1, 1),$ and $\mathbf{u}_3 = (0, 0, 1)$ into an orthonormal basis. 50 marks

- 3. Let $A = \begin{bmatrix} 2 & 1 & -2 \\ 2 & 3 & -4 \\ 1 & 1 & -1 \end{bmatrix}$.
 - (a) (i) Show that $p(\lambda)$, the characteristic polynomial of the matrix A, is given by

$$p(\lambda) = (\lambda - 1)^2(\lambda - 2).$$

			[20 marks]
	(ii)	Write down the eigenvalues of A .	[05 marks]
	(iii)	Find the eigenvectors of A .	[30 marks]
(b)	(i)	Write down a matrix P that diagonalizes A .	[05 marks]
	(ii)	Compute $P^{-1}A^5P$.	[15 marks]
(c)		Verify the Cayley-Hamilton theorem for the matrix A .	[15 marks]
	(ii)	Hence, show that $A^{-1} = \frac{1}{2} (A^2 - 4A + 5I)$.	[10 marks]

4. Let $S = \{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ be a basis for \mathbb{R}^3 , where $\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (0, 1, 1), \text{ and } \mathbf{u}_3 = (0, 0, 1)$ and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation for which

$$T(\mathbf{u}_1) = (0,0,0), \quad T(\mathbf{u}_2) = (-1,1,-1), \quad T(\mathbf{u}_3) = (0,0,-1).$$

- (a) (i) Find a formula for T(x, y, z), for all $(x, y, z) \in \mathbb{R}^3$. [25 marks] (ii) Verify that T is linear. [25 marks] (b) Find a basis for Ker(T) and a basis for Im(T). [20+20 marks]
- (c) Verify that dim $Ker(T) + \dim Im(T) = \dim \mathbb{R}^3$. [10 marks]
