University of Ruhuna
 Bachelor of Science General Degree Level III (Semester I) Examination - 2021

Subject: Applied Mathematics
Course Unit: AMT311 β
(Numerical Methods with Applications).
Time: Two (02) Hours
Answer All Questions
Calculators provided by the university are allowed to use.

1. a) In the usual notation, define the matrix norms, $\|A\|_{1},\|A\|_{2}$ and $\|A\|_{\infty}$, where A is a matrix o: order n.
Find $\|A\|_{1},\|A\|_{2}$ and $\|A\|_{\infty}$ for the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 1 & 4 \\
0 & -2 & 4
\end{array}\right)
$$

Define the condition number $\kappa(A)$ for a non-singular matrix A.
Calculate $\kappa(A)$ for the above matrix A.
b) Determine whether each of the given matrices is in row echelon form
$B=\left(\begin{array}{cccc}1 & 0 & -3 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right) \quad C=\left(\begin{array}{ccccc}1 & 3 & 0 & 2 & 4 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0\end{array}\right)$
(i) By recording the row operations you perform, determine reduced row echelon forms of B and C.
(ii) Obtain solutions for the system of linear equations

$$
\begin{array}{r}
3 x_{1}+3 x_{2}+4 x_{3}=10 \\
2 x_{1}+x_{2}+3 x_{3}=12 \\
x_{1}+x_{2}+3 x_{3}=3 .
\end{array}
$$

by converting into row echelon form, and applying back substitution.
2. a) Obtain solution for the following linear system by using Gauss Jordan method with partial pivoting

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=1 \\
4 x_{1}+3 x_{2}-3 x_{3}=3 \\
3 x_{1}+5 x_{2}+3 x_{3}=2
\end{array}
$$

Continued...
b) In the usual notation, use the decomposition $A=L+D+U$ in order to write down the general formula of the Jacobi iterative method for the system $A x=b$.
c) Solve the system of equations

$$
\begin{array}{r}
10 x_{1}+x_{2}+x_{3}=3 \\
x_{1}+3 x_{2}+x_{3}=1 \\
x_{1}+3 x_{2}+7 x_{3}=2 .
\end{array}
$$

upto the second iterative $x^{(2)}$ using Jacobi iterative method with initial approximation $x^{0}=(0,0,0)^{T}$.
3. a) (i) Consider the initial value problem

$$
\frac{d y}{d t}=f(y, t)=t^{2} y-t+5, \quad y(0)=5 .
$$

Show that the function satisfies the Lipschitz condition on $D=\{(t, y) \mid 0 \leq y \leq 3,0 \leq t \leq 4\}$.
(ii) In the usual notation, obtain general form of the Picard iteration formula

$$
y_{n+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(s, y_{n}(s) d s, \quad n \geq 0,\right.
$$

for the initial value problem

$$
y^{\prime}=f(x, y) ; \quad y\left(x_{0}\right)=y_{0} .
$$

Hence, solve the following initial value problem

$$
y^{\prime}=2(y+1) ; \quad y(0)=0 .
$$

for $y_{2}(x)$.
b) Consider

$$
\frac{d y^{2}}{d x^{2}}+5 \frac{d y}{d x}-3 y-5 x=0, \quad \text { with } y(0)=0 \text { and } y^{\prime}(0)=1 .
$$

By using Heun's method and taking step size as 0.2 , find the approximation for $y(0.2)$ and x^{\prime} at $t=0.1$
c) In the usual notation, express the general form of the fourth order Runge Kutta method to solve the initial value problem,

$$
y^{\prime}=f(x, y) ; \quad y\left(x_{0}\right)=y_{0},
$$

with step size h.
Consider the initial value problem

$$
\frac{d y}{d x}=x^{2}+y^{2}+5, \quad y(0)=5
$$

By using fourth order Runge Kutta scheme, obtain the approximation at $x=0.1$ with step size 0.1.
4. In order to solve the heat equation $u_{x x}=c u_{t}$ numerically for $t>0$ and $0 \leq x \leq a$ subject to boundary conditions $u(0, t)=T_{0}, u(a, t)=T_{a}$ and the initial condition $u(x, 0)=f(x), 0<x<a$, we use the discretization $x_{\imath}=i h$, for $i=1,2, \ldots n$ and $t_{j}=j k$ for $j=1,2, \ldots n$ where $h=a / n$, and $k>0$ are step sizes in x and t axes respectively.
In the usual notation, derive

$$
u_{i, \jmath+1}=r u_{i+1, J}+(1-2 r) u_{i, j}+r u_{\imath-1, J},
$$

where $r=k / c h^{2}$.

Consider the heat equation $u_{x x}=2 u_{t} \quad t>0$ and $0 \leq x \leq 1$, with boundary conditions

$$
T_{0}=1, \quad T_{a}=0, \quad t>0,
$$

and initial condition $u(x, 0)=0, \quad$ for $0<x<1$.
a) Find the approximated temperature at each of the interior mesh points for time steps $j=$ $0.1,2$ when $h=0.2$ and $k=1 / 30$.
b) Sketch the approximated solution with respect to x obtained in part (a).
c) Discuss the stability of the solution based on the results obtained in part (b).

